Publications by authors named "Demao Chen"

By using readily available enaminones, aryl hydrazine hydrochlorides, and alkynes as starting materials, the chemo-selective three-component synthesis of atropisomeric -(-alkenylaryl) pyrazoles has been efficiently accessed with rhodium catalysis. Unlike Satoh-Miura reaction leading to the alkyne-based C-H benzannulation by using prior prepared -phenyl pyrazoles and alkynes as substrates, this three-component protocol displays unprecedented selectivity of C-H alkenylation by blocking the second round metal alkenylation with the key protonation step in the presence of acids.

View Article and Find Full Text PDF

A facile and practical method for the synthesis of fused tricyclic pyrazolo[5,1-]isoquinolines has been realized via the reactions of enaminones, hydrazine hydrochloride, and internal alkynes. By means of Rh catalysis, the extraordinary high-order bond functionalization, including the transformation of aryl C-H, ketone C═O, and alkenyl C-N bonds in the enaminones, marks the major feature of the cascade reactions. The results disclose the individual advantage of enaminones in the design of novel and efficient synthetic methods.

View Article and Find Full Text PDF

The synthesis of -naphthyl pyrazoles has been realized by the direct three-component reactions of enaminones, aryl hydrazine hydrochlorides and internal alkynes Rh(III) catalysis. The synthetic reactions employing simple substrates lead to simultaneous construction of dual cyclic moieties, including a pyrazole ring and a phenyl ring, sequential formation of two C-N and three C-C bonds.

View Article and Find Full Text PDF

Memantine is a moderate-affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that stabilizes cognitive, functional, and behavioral decline in patients with moderate to severe Alzheimer's disease (AD). In AD, the extracellular deposition of fibrillogenic amyloid-beta peptides (Abeta) occurs as a result of aberrant processing of the full-length Abeta precursor protein (APP). Memantine protects neurons from the neurotoxic effects of Abeta and improves cognition in transgenic mice with high brain levels of Abeta.

View Article and Find Full Text PDF

The sporadic nature of Alzheimer's disease (AD) argues for an environmental link that may drive AD pathogenesis; however, the triggering factors and the period of their action are unknown. Recent studies in rodents have shown that exposure to lead (Pb) during brain development predetermined the expression and regulation of the amyloid precursor protein (APP) and its amyloidogenic beta-amyloid (Abeta) product in old age. Here, we report that the expression of AD-related genes [APP, BACE1 (beta-site APP cleaving enzyme 1)] as well as their transcriptional regulator (Sp1) were elevated in aged (23-year-old) monkeys exposed to Pb as infants.

View Article and Find Full Text PDF

One of the main hallmarks of Alzheimer's disease (AD) is the brain deposition of senile plaques made up of toxic amyloid beta-peptide (Abeta), which is derived from a larger protein called the beta-amyloid precursor protein (APP). Both APP processing and cholinesterase activity are affected in the AD brain, but, yet, cholinesterase inhibitors (ChEI) remain the primary Food and Drug Administration approved drugs for AD within the United States. Herein, we evaluated the effects of two clinically relevant drugs on the APP pathway, which is presumably involved in AD pathogenesis.

View Article and Find Full Text PDF

Major characteristics of Alzheimer's disease (AD) are synaptic loss, cholinergic dysfunction, and abnormal protein depositions in the brain. The amyloid beta-peptide (Abeta), a proteolytic fragment of amyloid beta precursor protein (APP), aggregates to form neuritic plaques and has a causative role in AD. A present focus of AD research is to develop safe Abeta-lowering drugs.

View Article and Find Full Text PDF

Autism is characterized by restricted, repetitive behaviors and impairment in socialization and communication. Although no neuropathologic substrate underlying autism has been found, the findings of brain overgrowth via neuroimaging studies and increased levels of brain-derived neurotrophic factor (BDNF) in neuropathologic and blood studies favor an anabolic state. We examined acetylcholinesterase, plasma neuronal proteins, secreted beta-amyloid precursor protein (APP), and amyloid-beta 40 and amyloid-beta 42 peptides in children with and without autism.

View Article and Find Full Text PDF

Inflammatory and oxidative events are up-regulated in the brain of AD patients. It has been reported that in animal models of AD, exposure to aluminum (Al) or copper (Cu) enhanced oxidative events and accumulation of amyloid beta (Abeta) peptides. The present study was designed to evaluate the effect of a 3-month exposure of mice to copper sulfate (8 microM), aluminum lactate (10 or 100 microM), or a combination of the salts.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that the amyloid-beta peptide (A beta) is a key factor in Alzheimer's disease (AD), making it a potential target for treatments aimed at slowing down disease progression.
  • A cholinesterase inhibitor called phenserine has been found to reduce the production of amyloid precursor protein (APP) and A beta, but it requires high doses that limit its effectiveness due to side effects.
  • The study screened 144 phenserine analogs to find compounds that can inhibit APP synthesis without significant acetylcholinesterase activity; eight candidates were identified that effectively reduced APP and A beta production in human cells without toxicity, showing promise for further research as potential AD therapies.
View Article and Find Full Text PDF

The aging brain shows selective neurochemical changes involving several neural cell populations. Increased brain metal levels have been associated with normal aging and a variety of diseases, including Alzheimer's disease (AD). Melatonin levels are decreased in aging, particularly in AD subjects.

View Article and Find Full Text PDF

Like acetylcholinesterase, butyrylcholinesterase (BChE) inactivates the neurotransmitter acetylcholine (ACh) and is hence a viable therapeutic target in Alzheimer's disease, which is characterized by a cholinergic deficit. Potent, reversible, and brain-targeted BChE inhibitors (cymserine analogs) were developed based on binding domain structures to help elucidate the role of this enzyme in the central nervous system. In rats, cymserine analogs caused long-term inhibition of brain BChE and elevated extracellular ACh levels, without inhibitory effects on acetylcholinesterase.

View Article and Find Full Text PDF

Melatonin is a hormone secreted by the pineal gland, mostly in the dark period of the light/dark cycle, with corresponding fluctuations reflected in the plasma melatonin levels. This hormone plays a critical role in the regulation of various neural and endocrine processes that are synchronized with daily change in photoperiod. Abnormal melatonin levels are associated with metabolic disturbances and other disorders.

View Article and Find Full Text PDF

Melatonin levels decrease with aging in mice. Dietary supplementation with melatonin has recently been shown to result in a significant rise in levels of endogenous melatonin in the serum and all other tissue samples tested. Herein, the effects of dietary melatonin on brain levels of nitric oxide synthase, synaptic proteins and amyloid beta-peptides (Abeta) were determined in mice.

View Article and Find Full Text PDF

Glucagon-like peptide-1(7-36)-amide (GLP-1) is an endogenous insulinotropic peptide that is secreted from the gastrointestinal tract in response to food. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion and lowers blood glucose and food intake in patients with type 2 diabetes mellitus. GLP-1 receptors, which are coupled to the cyclic AMP second messenger pathway, are expressed throughout the brains of rodents and humans.

View Article and Find Full Text PDF

The insulinotropic hormone glucagon-like peptide-1 (7-36)-amide (GLP-1) has potent effects on glucose-dependent insulin secretion, insulin gene expression, and pancreatic islet cell formation and is presently in clinical trials as a therapy for type 2 diabetes mellitus. We report on the effects of GLP-1 and two of its long-acting analogs, exendin-4 and exendin-4 WOT, on neuronal proliferation and differentiation, and on the metabolism of two neuronal proteins in the rat pheochromocytoma (PC12) cell line, which has been shown to express the GLP-1 receptor. We observed that GLP-1 and exendin-4 induced neurite outgrowth in a manner similar to nerve growth factor (NGF), which was reversed by coincubation with the selective GLP-1 receptor antagonist exendin (9-39).

View Article and Find Full Text PDF