The development of new thermoelectric conversion and cooling materials is an important means of addressing global climate and heat emissions in the future. While heavy and toxic elements like tellurium and lead are traditionally used to make thermoelectric materials with poor mechanical properties, recent decades have seen a gradual push towards greener and more sustainable alternatives. One such potential alternative material for thermoelectric and thermal management applications would be the Nitinol (TiNi) shape memory alloy, due to their superior mechanical properties.
View Article and Find Full Text PDFA high-performance composite bifunctional electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been synthesized growth of a hybrid precursor of graphene oxide (GO) and cobalt-based zeolite imidazolium framework (ZIF-67) under hydrothermal condition, followed by calcination at elevated temperature. The as-prepared composite bifunctional catalyst is confirmed to possess a structure of N-GC/Co@CoO/rGO, with core-shell nanoparticles of Co@CoO encapsulated in nitrogen-doped graphitic carbon (N-GC) thin layers which are then overall supported by reduced graphene oxide (rGO) sheets. With N-GC furnishing high population of ORR active sites, CoO being active for OER which is further enhanced by a highly conductive metal core, rGO sheets enhancing the overall electronic conduction, as well as the multiple synergistic couplings in the composite materials, pronounced ORR and OER catalytic activities with superior stability have been achieved.
View Article and Find Full Text PDFDurable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high-performance primary zinc-air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3 O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e.
View Article and Find Full Text PDF