Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) is a method for tandem mass spectrometry in which precursor and fragment ions are correlated by manipulating ion radii rather than by ion isolation. A 2D mass spectrum contains the fragmentation patterns of all analytes in a sample, acquired in parallel. We report ultrahigh-resolution narrowband 2D mass spectra of a mixture of two histone peptides with the same sequence, one of which carries an acetylation and the other a trimethylation (/ 0.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry method that relies on manipulating ion motions to correlate precursor and fragment ion signals. 2D mass spectra are obtained by performing a Fourier transform in both the precursor ion mass-to-charge ratio () dimension and the fragment ion dimension. The phase of the ion signals evolves linearly in the precursor dimension and quadratically in the fragment dimension.
View Article and Find Full Text PDFWe study the application of Optimal Control Theory to Ion Cyclotron Resonance. We test the validity and the efficiency of this approach for the robust excitation of an ensemble of ions with a wide range of cyclotron frequencies. Optimal analytical solutions are derived in the case without any pulse constraint.
View Article and Find Full Text PDFConjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass spectrometry without requiring ion isolation. In the ICR cell, the precursor ion radii are modulated before fragmentation, which results in modulation of the abundance of their fragments. The resulting 2D mass spectrum enables a correlation between the precursor and fragment ions.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension.
View Article and Find Full Text PDFWe present a development of the "Plasmodesma" dereplication method [Margueritte et al., Magn. Reson.
View Article and Find Full Text PDFIn natural product drug discovery, several strategies have emerged to highlight specifically bioactive compound(s) within complex mixtures (fractions or crude extracts) using metabolomics tools. In this area, a great deal of interest has raised among the scientific community on strategies to link chemical profiles and associated biological data, leading to the new field called "biochemometrics". This article falls into this emerging research by proposing a complete workflow, which was divided into three major steps.
View Article and Find Full Text PDFFourier transform ion cyclotron resonance mass analysers (FT-ICR MS) can offer the highest resolutions and mass accuracies in mass spectrometry. Mass spectra acquired in an FT-ICR MS can yield accurate elemental compositions of all compounds in a complex sample. Fragmentation caused by ion-neutral, ion-electron, or ion-photon interactions leads to more detailed structural information on compounds.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2DMS) allows data independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors without isolation prior to fragmentation. Developments in computer capabilities and implementations in Fourier transform ion cyclotron resonance (FTICR) MS over the past decade have allowed the technique to become a useful analytical tool for bottom-up proteomics (BUP) and, more recently, in top-down protein analysis (TDP). In this work, a new method of TDP is developed using 2D FTICR MS, called MS/2D FTICR MS or MS/2DMS.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it.
View Article and Find Full Text PDFComputer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true.
View Article and Find Full Text PDFLiquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) is a tandem mass spectrometry technique that allows data-independent fragmentation of all precursors in a mixture without previous isolation, through modulation of the ion cyclotron frequency in the ICR-cell prior to fragmentation. Its power as an analytical technique has been proven particularly for proteomics. Recently, a comparison study between 1D and 2D MS has been performed using infrared multiphoton dissociation (IRMPD) on calmodulin (CaM), highlighting the capabilities of the technique in both top-down (TDP) and bottom-up proteomics (BUP).
View Article and Find Full Text PDFTwo-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes.
View Article and Find Full Text PDFObtaining the full MS/MS map for fragments and precursors of complex mixtures without hyphenation with chromatographic separation by a data-independent acquisition is a challenge in mass spectrometry which is solved by two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Until now 2D FTICR MS afforded only a moderate resolution for precursor ion since this resolution is limited by the number of evolution interval steps to which the number of scans, the acquisition time, and the sample consumption are proportional. An overnight acquisition is already required to reach a quadrupole mass filter-like unit mass resolution.
View Article and Find Full Text PDFThe human androgen receptor (AR) is a ligand inducible transcription factor that harbors an amino terminal domain (AR-NTD) with a ligand-independent activation function. AR-NTD is intrinsically disordered and displays aggregation properties conferred by the presence of a poly-glutamine (polyQ) sequence. The length of the polyQ sequence as well as its adjacent sequence motifs modulate this aggregation property.
View Article and Find Full Text PDFThe halogen bond (XB) donor properties of neutral 1,4-diaryl-5-iodo-1,2,3-triazoles are explored using a combination of computational and experimental results and are shown to be competitive in halogen bonding efficiency with the classic pentafluoroiodobenzene XB donor. The SAr reactivity of these donors permits the facile assembly of an iodotriazole functionalised with a 3-oxypyridine XB acceptor, thus generating a molecular scaffold capable of undergoing dimerisation through the formation of two halogen bonds. The formation of this halogen-bonded dimer is demonstrated by H and DOSY NMR experiments and a plausible structure generated using DFT calculations.
View Article and Find Full Text PDFNMR is a tool of choice for the measurement of diffusion coefficients of species in solution. The DOSY experiment, a 2D implementation of this measurement, has been proven to be particularly useful for the study of complex mixtures, molecular interactions, polymers, etc. However, DOSY data analysis requires to resort to the inverse Laplace transform, in particular for polydisperse samples.
View Article and Find Full Text PDFDiffusion ordered NMR is implemented to determine accurately the mobility of paramagnetic tris-dipicolinate lanthanide complexes that are versatile probes of protein structure. It is shown that diffusion coefficient ratios can be measured with an accuracy of 1 % using a standard BPPLED pulse sequence, which allows for observing significant, though weak, variations when different species are interacting with the paramagnetic compound. We demonstrate that this approach is complementary to classical chemical shift titration experiments, and that it can be applied successfully to probe the supramolecular dynamic interactions between lanthanide complexes and small molecules on the one hand, or to determine rapidly their affinity for a targeted protein.
View Article and Find Full Text PDF