Publications by authors named "Delsanto P"

Objectives: Several formulations have been proposed in order to model human growth from birth to maturity. They are usually based on "ad hoc" heuristic assumptions. In the present contribution we adopt, as an alternative, a completely general (interdisciplinary) approach, based on the formalism of the Phenomenological Universalities (PUN).

View Article and Find Full Text PDF

Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a promising tool for the clinical diagnosis of tumors, whose implementation may be improved through the use of suitable hemodynamic models. If one prefers to avoid assumptions about the tumor physiology, empirical fitting functions may be adopted. For this purpose, in this paper we discuss the exploitation of a recently proposed phenomenological universalities (PUN) formalism.

View Article and Find Full Text PDF

Objectives: Multicellular tumour spheroids (MTS) provide an important tool for study of the microscopic properties of solid tumours and their responses to therapy. Thus, observation of large-scale volume oscillations in MTS, reported several years ago by two independent groups (1,2), in our opinion represent a remarkable discovery, particularly if this could promote careful investigation of the possible occurrence of volume oscillations of tumours 'in vivo'.

Materials And Methods: Because of high background noise, quantitative analysis of properties of observed oscillations has not been possible in previous studies.

View Article and Find Full Text PDF

Different physical features of an organism are often measured concurrently, because their correlations can be used as predictors of longevity, future health, or adaptability to an ecological niche. Since, in general, we do not know a priori if the temporal variations in the measured quantities are causally related, it may be useful to have a method that could help us to identify possible correlations and to obtain parameters that may vary from population to population. In this paper we develop a procedure that may detect underlying relationships.

View Article and Find Full Text PDF

Multipassage experiments are performed by subcutaneous implantation in lab animals (usually mice) of a small number of cells from selected human lines. Tumor cells are then passaged from one mouse to another by harvesting them from a growing tumor and implanting them into other healthy animals. This procedure may be extremely useful to investigate the various mechanisms involved in the long term evolution of tumoral growth.

View Article and Find Full Text PDF

The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class.

View Article and Find Full Text PDF

Cancer growth dynamics, commonly simulated with a Gompertzian model, is analyzed in the framework of a more recent and realistic model. In particular, we consider the setting of a tumor embedded in a host organ and investigate their interaction. We assume that, at least in some cases, tumor metastasis may be triggered by an 'energetic crisis', when the tumor exceeds the 'carrying capacity' of the host organ.

View Article and Find Full Text PDF

Background: The Phenomenological Universalities approach has been developed by P.P. Delsanto and collaborators during the past 2-3 years.

View Article and Find Full Text PDF

Invasiveness, one of the hallmarks of tumor progression, represents the tumor's ability to expand into the host tissue by means of several complex biochemical and biomechanical processes. Since certain aspects of the problem present a striking resemblance with well-known physical mechanisms, such as the mechanical insertion of a solid inclusion in an elastic material specimen (G Eaves 1973 The invasive growth of malignant tumours as a purely mechanical process J. Pathol.

View Article and Find Full Text PDF

Cancer growth models may be divided into macroscopic models, which describe the tumor as a single entity, and microscopic ones, which consider the tumor as a complex system whose behavior emerges from the local dynamics of its basic components, the neoplastic cells. Mesoscopic models (e.g.

View Article and Find Full Text PDF

Background: Tissue invasion, one of the hallmarks of cancer, is a major clinical problem. Recent studies suggest that the process of invasion is driven at least in part by a set of physical forces that may be susceptible to mathematical modelling which could have practical clinical value.

Model And Conclusion: We present an analogy between two unrelated instabilities.

View Article and Find Full Text PDF

We present a model to describe the physics of chemoreception in processes determined by competitive ligand binding. Our model describes the competition between various populations, such as ligands vs. blockers and receptors vs.

View Article and Find Full Text PDF

We argue that volumetric growth dynamics of a solid cancer depend on the tumor system's overall surface extension. While this at first may seem evident, to our knowledge, so far no theoretical argument has been presented explaining this relationship explicitly. In here, we therefore develop a conceptual framework based on the so-called 'universal scaling law' and then support our conjecture through evaluation with experimental data.

View Article and Find Full Text PDF

A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.

View Article and Find Full Text PDF

A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved.

View Article and Find Full Text PDF

We have previously reported that a universal growth law, as proposed by West and collaborators for all living organisms, appears to be able to describe also the growth of tumors in vivo after an initial exponential growth phase. In contrast to the assumption of a fixed power exponent p (assumed by West et al. to be equal to 3/4), we propose in this paper a dynamic evolution of p, using experimental data from the cancer literature.

View Article and Find Full Text PDF

Both the lack of nutrient supply and rising mechanical stress exerted by the microenvironment appear to be able to cause discrepancies between the actual, observed tumor mass and that predicted by West et al.'s [A general model for ontogenetic growth. Nature 2001;413:628-31] universal growth model.

View Article and Find Full Text PDF

Multicellular tumor spheroids are valuable experimental tools in cancer research. By introducing an intermediate model, we have been able to successfully relate mesoscopic and macroscopic descriptions of spheroid growth. Since these descriptions stem from completely different roots (cell dynamics, and energy conservation and scaling arguments, respectively), their consistency validates both approaches and allows us to establish a direct correspondence between parameters characterizing processes occurring at different scales.

View Article and Find Full Text PDF

Sonic crystals are artificial structures consisting of a periodic array of acoustic scatterers embedded in a homogeneous matrix material, with a usually large impedance mismatch between the two materials. They exhibit strong sound attenuation at selective frequency bands due to the interference of multiply reflected waves. However, sound attenuation bands in the audible range are only achieved by unfunctionally large sonic crystals.

View Article and Find Full Text PDF

A general model for the ontogenetic growth of living organisms has been recently proposed. Here we investigate the extension of this model to the growth of solid malignant tumors. A variety of in vitro and in vivo data are analysed and compared with the prediction of a "universal" law, relating properly rescaled tumor masses and tumor growth times.

View Article and Find Full Text PDF

Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.

View Article and Find Full Text PDF

Reliable numerical simulation techniques represent a very valuable tool for analysis. For this purpose we investigated the applicability of the local interaction simulation approach (LISA) to the study of the propagation of Lamb waves in complex structures. The LISA allows very fast and flexible simulations, especially in conjunction with parallel processing, and it is particularly useful for complex (heterogeneous, anisotropic, attenuative, and/or nonlinear) media.

View Article and Find Full Text PDF

An important task in nondestructive materials evaluation is the development of techniques to characterize the bond quality of adherent joints. Binding forces are nonlinear and cause a nonlinear modulation of transmitted and reflected ultrasonic waves. As a consequence, the higher harmonics generated by an insonified monochromatic wave give information about the adhesive bonds.

View Article and Find Full Text PDF

Competition for available nutrients and the presence of anatomical barriers are major determinants of tumor growth in vivo. We extend a model recently proposed to simulate the growth of neoplasms in real tissues to include geometrical constraints mimicking pressure effects on the tumor surface induced by the presence of rigid or semirigid structures. Different tissues have different diffusivities for nutrients and cells.

View Article and Find Full Text PDF

The self-regulatory interactions between cells and the vascular system are mediated by signals propagating at a finite speed. In order to build up a physical model of these processes, several features, such as storing of internal energy, nonclassical nonlinear behavior, and delay and threshold effects, have to be taken into account. Considering cells as particles in different metabolic states according to their internal energy, we have developed a model based on the local interaction simulation approach.

View Article and Find Full Text PDF