Background: Illicit use of buprenorphine has increased in the U.S., but our understanding of its use remains limited.
View Article and Find Full Text PDFWhile contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker.
View Article and Find Full Text PDFBackground: Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting scientific literature. Prior approaches to LBD include use of: (1) domain expertise and structured background knowledge to manually filter and explore the literature, (2) distributional statistics and graph-theoretic measures to rank interesting connections, and (3) heuristics to help eliminate spurious connections. However, manual approaches to LBD are not scalable and purely distributional approaches may not be sufficient to obtain insights into the meaning of poorly understood associations.
View Article and Find Full Text PDFObjectives: The role of social media in biomedical knowledge mining, including clinical, medical and healthcare informatics, prescription drug abuse epidemiology and drug pharmacology, has become increasingly significant in recent years. Social media offers opportunities for people to share opinions and experiences freely in online communities, which may contribute information beyond the knowledge of domain professionals. This paper describes the development of a novel semantic web platform called PREDOSE (PREscription Drug abuse Online Surveillance and Epidemiology), which is designed to facilitate the epidemiologic study of prescription (and related) drug abuse practices using social media.
View Article and Find Full Text PDFAims: Many websites provide a means for individuals to share their experiences and knowledge about different drugs. Such User-Generated Content (UGC) can be a rich data source to study emerging drug use practices and trends. This study examined UGC on extra-medical use of loperamide among illicit opioid users.
View Article and Find Full Text PDFObjectives: This paper presents a methodology for recovering and decomposing Swanson's Raynaud Syndrome-Fish Oil hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson's manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature.
View Article and Find Full Text PDFIEEE Int Conf Bioinform Biomed Workshops
January 2011
Many complex information needs that arise in biomedical disciplines require exploring multiple documents in order to obtain information. While traditional information retrieval techniques that return a single ranked list of documents are quite common for such tasks, they may not always be adequate. The main issue is that ranked lists typically impose a significant burden on users to filter out irrelevant documents.
View Article and Find Full Text PDF