Publications by authors named "Delphine Vivier"

Glioblastoma (GBM) poses significant challenges regarding complete tumor removal due to its heterogeneity and invasiveness, emphasizing the need for effective therapeutic options. In the last two decades, fluorescence-guided surgery (FGS), employing fluorophores such as 5-aminolevulinic acid (5-ALA) to enhance tumor delineation, has gained attraction among neurosurgeons. However, some low-grade tumors do not show any accumulation of the tracers, and the lack of patient stratification represents an important limitation.

View Article and Find Full Text PDF

For the past two decades, the emerging role of the endothelin (ET) axis in cancer has been extensively investigated, and its involvement in several mechanisms described as "hallmarks of cancer" has clearly highlighted its potential as a therapeutic target. Despite the growing interest in finding effective anticancer drugs, no breakthrough treatment has successfully made its way to the market. Recently, our team reported the development of a new immuno-positron emission tomography probe targeting the ET A receptor (ET, one of the ET receptors) that allows the successful detection of ET glioblastoma, paving the way for the elaboration of novel antibody-based strategies.

View Article and Find Full Text PDF

Background: The resistance of glioblastoma stem cells (GSCs) to treatment is one of the causes of glioblastoma (GBM) recurrence. Endothelin A receptor (ET) overexpression in GSCs constitutes an attractive biomarker for targeting this cell subpopulation, as illustrated by several clinical trials evaluating the therapeutic efficacy of endothelin receptor antagonists against GBM. In this context, we have designed an immunoPET radioligand combining the chimeric antibody targeting ET, chimeric-Rendomab A63 (xiRA63), with Zr isotope and evaluated the abilities of xiRA63 and its Fab (ThioFab-xiRA63) to detect ET tumors in a mouse model xenografted orthotopically with patient-derived Gli7 GSCs.

View Article and Find Full Text PDF

Among all approaches in molecular imaging, the combination of near-infrared fluorescence imaging (NIRF) with radioisotopic imaging (PET or SPECT) allows one to benefit from the advantages of each of the imaging techniques, which are very complementary and of comparable sensitivity. To this end, the construction of monomolecular multimodal probes (MOMIP) has made it possible to combine the two imaging modalities within the same molecule, thus limiting the number of bioconjugation sites and yielding more homogeneous conjugates compared with those prepared through sequential conjugation. However, in order to optimize the bioconjugation strategy and, at the same time, the pharmacokinetic and biodistribution properties of the resulting imaging agent, a site-specific approach may be preferred.

View Article and Find Full Text PDF

The human leucine-rich repeat-containing protein 15 (LRRC15) is a membrane protein identified as a marker of CAF (cancer-associated fibroblast) cells whose overexpression is positively correlated with cancer grade and outcome. Nuclear molecular imaging (i.e.

View Article and Find Full Text PDF

High expression levels of the tumor-associated antigen MUC1 have been correlated with tumor aggressiveness, poor response to therapy, and poor survival in several tumor types, including breast, pancreatic, and epithelial ovarian cancer. Herein, we report the synthesis, characterization, and in vivo evaluation of a novel radioimmunoconjugate for the immuno-positron emission tomography (immunoPET) imaging of MUC1 expression based on the AR20.5 antibody.

View Article and Find Full Text PDF

: The overwhelming majority of radioimmunoconjugates are produced random conjugation methods predicated on attaching bifunctional chelators to the lysines of antibodies. However, this approach inevitably produces poorly defined and heterogeneous immunoconjugates because antibodies have several lysines distributed throughout their structure. To circumvent this issue, we have previously developed a chemoenzymatic bioconjugation strategy that site-specifically appends cargoes to the biantennary heavy chain glycans attached to C2 domains of the immunoglobulin's Fc region.

View Article and Find Full Text PDF

Click chemistry at a tetrazine core is useful for bioorthogonal labeling and crosslinking. Introduced here are two new classes of doubly clickable s-aryl tetrazines synthesized by Cu-catalyzed cross-coupling. Homocoupling of o-brominated s-aryl tetrazines leads to bis(tetrazine)s structurally characterized by tetrazine cores arranged face-to-face.

View Article and Find Full Text PDF

Antibodies are promising vectors for PET imaging. However, the high uptake of radioimmunoconjugates in nontarget tissues such as the liver and spleen hampers their performance as radiotracers. This off-target uptake can lead to suboptimal tumor-to-background activity concentration ratios, decreasing the contrast of images and reducing their diagnostic utility.

View Article and Find Full Text PDF

Over the past 25 years, antibodies have emerged as extraordinarily promising vectors for the delivery of radionuclides to tumors for nuclear imaging. While radioimmunoconjugates often produce very high activity concentrations in target tissues, they also are frequently characterized by elevated activity concentrations in healthy organs as well. The root of this background uptake lies in the complex network of biological interactions between the radioimmunoconjugate and the subject.

View Article and Find Full Text PDF

A critical benchmark in the development of antibody-based therapeutics is demonstration of efficacy in preclinical mouse models of human disease, many of which rely on immunodeficient mice. However, relatively little is known about how the biology of various immunodeficient strains impacts the fate of these drugs. Here we used immunoPET radiotracers prepared from humanized, chimeric, and murine mAbs against four therapeutic oncologic targets to interrogate their biodistribution in four different strains of immunodeficient mice bearing lung, prostate, and ovarian cancer xenografts.

View Article and Find Full Text PDF

The conjugation of antibodies with cytotoxic drugs can alter their in vivo pharmacokinetics. As a result, the careful assessment of the in vivo behavior, and specifically the tumor-targeting properties, of antibody-drug conjugates represents a crucial step in their development. In order to facilitate this process, we have created a methodology that facilitates the dual labeling of an antibody with both a toxin and a radionuclide for positron emission tomography (PET).

View Article and Find Full Text PDF

Background: Pretargeting-based approaches are being investigated for radioimmunoimaging and therapy applications to reduce the effective radiation burden to the patient. To date, only a few studies have used short-lived radioisotopes for pretargeting of antibodies, and such examples with internalizing antibodies are even rarer. Herein, we have investigated pretargeting methodology using inverse electron-demand Diels-Alder (IEDDA) for tracing two clinically relevant, internalizing monoclonal antibodies, cetuximab and trastuzumab.

View Article and Find Full Text PDF

The TWIK-related K channel, TREK-1, has recently emerged as an attractive therapeutic target for the development of a novel class of analgesic drugs, suggesting that activation of TREK-1 could result in pain inhibition. Here, we report the synthesis of a series of substituted acrylic acids (1-54) based on our previous work with caffeate esters. The analogues were evaluated for their ability to modulate TREK-1 channel by electrophysiology and for their in vivo antinociceptive activity (acetic acid-induced writhing and hot plate assays), leading to the identification of a series of novel molecules able to activate TREK-1 and displaying potent antinociceptive activity in vivo.

View Article and Find Full Text PDF

Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics).

View Article and Find Full Text PDF

The TWIK-related K(+) channel, TREK-1, has recently emerged as an attractive therapeutic target for the development of a novel class of analgesic drugs. It has been reported that TREK-1 -/- mice were more sensitive than wild-type mice to painful stimuli, suggesting that activation of TREK-1 could result in pain inhibition. Here we report the synthesis of a series of substituted caffeate esters (12a-u) based on the hit compound CDC 2 (cinnamyl 3,4-dihydroxyl-α-cyanocinnamate).

View Article and Find Full Text PDF