Publications by authors named "Delphine Merel"

Neutral and ionic ruthenium and iron aliphatic PNHP-type pincer complexes (PNHP = NH(CH2CH2PiPr2)2) bearing benzyl, n-butyl or tert-butyl isocyanide ancillary ligands have been prepared and characterized. Reaction of [RuCl2(PNHP)]2 with one equivalent CN-R per ruthenium center affords complexes [RuCl2(PNHP)(CNR)] (R = benzyl, 1a, R = n-butyl, 1b, R = t-butyl, 1c), with cationic [RuCl(PNHP)(CNR)2]Cl 2a-c as side-products. Dichloride species 1a-c react with excess NaBH4 to afford [RuH(PNHP)(BH4)(CN-R)] 3a-c, analogues to benchmark Takasago catalyst [RuH(PNHP)(BH4)(CO)].

View Article and Find Full Text PDF

A transition-metal frustrated Lewis pair approach has been envisaged to enhance the catalytic activity of tricarbonyl phosphine-free iron complexes in reduction of amines. A new cyclopentadienyl iron(II) tricarbonyl complex has been isolated, fully characterized, and applied in hydrogenation. This phosphine-free iron complex is the first Earth-abundant metal complex that is able to catalyze chemoselective reductive alkylation of various functionalized amines with functionalized aldehydes.

View Article and Find Full Text PDF

Based on a "transition metal frustrated Lewis pair" approach, a cyclopentadienone iron tricarbonyl complex has been designed and applied in the reductive amination and hydrogenation of bicarbonate. This well-defined phosphine-free complex displays the best activities reported to date for an iron complex in the reduction of bicarbonate into formate and in reductive amination.

View Article and Find Full Text PDF

We report a new, simple and air-stable iron(II) complex pre-catalyst for the synthesis of substituted pyridines via a [2+2+2] cycloaddition between diynes and nitrile derivatives.

View Article and Find Full Text PDF