Summer cyanobacterial blooms exhibit a dynamic interplay between toxic and non-toxic genotypes, significantly influencing the cyanotoxin levels within a lake. The challenge lies in accurately predicting these toxin concentrations due to the significant temporal fluctuations in the proportions of toxic and non-toxic genotypes. Typically, the toxic genotypes dominate during the early and late summer periods, while the non-toxic variants prevail in mid-summer.
View Article and Find Full Text PDFUnder the effect of global change, management of cyanobacterial proliferation becomes increasingly pressing. Given the importance of interactions within microbial communities in aquatic ecosystems, a handful of studies explored the potential relations between cyanobacteria and their associated bacterial community (i.e.
View Article and Find Full Text PDFThe presence of microalgae in the atmosphere raises health and environmental concerns. Despite recent scientific advances, our knowledge of the origins and dynamics of photosynthetic cells in relation to atmospheric processes is limited due to a lack of empirical data. To address this gap, we conducted a one-year survey, collecting and analyzing rainwater samples.
View Article and Find Full Text PDFClimate change is having an increasingly rapid impact on ecosystems and particularly on the issue of water resources. The Internet of Things and communication technologies have now reached a level of maturity that allows sensors to be deployed more easily on sites to monitor them. The communicating node based on LoRaWAN technology presented in this article is open and allows the interfacing of numerous sensors for designing long-term environmental monitoring systems of isolated sites.
View Article and Find Full Text PDFThe increasing incidence of cyanobacterial blooms with their associated production of cyanotoxins lead managers of aquatics systems to control their biomass to limit the health risk. Among the variety of existing treatment approaches, hydrogen peroxide (HO) shows increasing use but the effects of environmental parameters on its effectiveness are still not completely known. With the aim to assess the efficiency of HO treatments in the control of cyanobacterial blooms and decrease toxic risk, we tested three Microcystis strains according to their ability to produce cyanotoxins (a microcystin-producing, non-microcystin-producing and mcyB-knockout mutant).
View Article and Find Full Text PDFGlobal warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes.
View Article and Find Full Text PDFBacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with during blooms in 12 lakes spanning four continents as an initial test of the hypothesized interactome.
View Article and Find Full Text PDFIn order to evaluate the recurrence of toxic cyanobacterial blooms and to determine the survival capabilities of the resistance cells through time, a sedimentary core spanning 6700 years was drilled in the eutrophic Lake Aydat. A multiproxy approach (density, magnetic susceptibility, XRF, pollen and non-pollen palynomorph analyses), was used initially to determine the sedimentation model and the land uses around the lake. Comparison with the akinete count revealed that Nostocales cyanobacteria have been present in Lake Aydat over a six thousand year period.
View Article and Find Full Text PDFUnder ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification.
View Article and Find Full Text PDFMonitoring of water and surface sediment in a French eutrophic lake (Lake Aydat) was carried out over a 2-year period in order to determine whether akinetes in sediment could be representative of the most recent bloom and to estimate their germination potential. Sediment analysis revealed two akinete species, and , present in the same proportions as observed for the pelagic populations. Moreover, similar spatial patterns observed for vegetative cells in the water column and akinete distributions in the sediment suggest that akinetes in the sediment may be representative of the previous bloom.
View Article and Find Full Text PDFAkinetes are resistant cells which have the ability to persist in sediment for several decades. We have investigated the temporal distribution of akinetes of two species, and , in a sediment core sampled in Lake Aydat (France), which covers 220 years. The upper part, from 1907 to 2016, the number of akinetes fluctuated but stayed at high concentrations, especially for in surface sediment (with the maximal value close to 6.
View Article and Find Full Text PDFParasitism is certainly one of the most important driving biotic factors of cyanobacterial blooms which remains largely understudied. Among these parasites, fungi from the phylum Chytridiomycota (i.e.
View Article and Find Full Text PDFNostocalean cyanobacteria are known to proliferate abundantly in eutrophic aquatic ecosystems, and to produce several cyanotoxins, including anatoxin-a. In this study, we investigated both the resistance and toxic potential of the akinetes (resistant cells), using cyanobacterial cultures and akinetes extracted from the sediment of Lake Aydat (France) sampled in the winter and spring. Intact and lysed akinetes were differentiated using a double control based on the autofluorescence of akinetes and SYTOX-green staining.
View Article and Find Full Text PDFOver the last few decades, cyanobacterial mass occurrence has become a recurrent feature of aquatic ecosystems. This has led to ecosystem exposure and health hazards associated with cyanotoxin production. The neurotoxin anatoxin-a and its homologs can be synthesized by benthic cyanobacterial species in lotic systems, but also by planktonic lacustrine species such as Dolichospermum (also known as Anabaena).
View Article and Find Full Text PDFCyanobacterial mass occurrence is becoming a growing concern worldwide. They notably pose a threat to water users when cyanotoxins are produced. The aim of this study was to evaluate the occurrence and the dynamics of two cyanotoxins: microcystin (MC) and anatoxin-a (ANTX-a), and of two of the genes responsible for their production (respectively mcyA and anaC) during three consecutive bloom periods (2011, 2012 and 2013) in Lake Aydat (Auvergne, France).
View Article and Find Full Text PDFMicrocystis is a toxic freshwater cyanobacterium with an annual life cycle characterized by the alternation of a planktonic proliferation stage in summer and a benthic resting stage in winter. Given the importance of both stages for the development and the survival of the population, we investigated the genotypic composition of the planktonic and benthic Microcystis subpopulations from the Grangent reservoir (France) during two distinct proliferation periods. Our results showed a succession of different dominant genotypes in the sediment as well as in the water all along the study periods with some common genotypes to both compartments.
View Article and Find Full Text PDFMicrocystis is a toxic colony-forming cyanobacterium, which can bloom in a wide range of freshwater ecosystems. Despite the ecological advantage of the colonial form, few studies have paid attention to the size of Microcystis colonies in the field. With the aim of evaluating the impact of a fluctuating physical environment on the colony size, the genotypic composition and the toxic potential of a Microcystis population, we investigated five different colony size classes of a Microcystis bloom in the Grangent reservoir (France).
View Article and Find Full Text PDFWe propose a double staining method based on the combination of two fluorochromes, calcofluor white (CFW; specific chitinous fluorochrome) and SYTOX green (nucleic acid stain), coupled to epifluorescence microscopy for counting, identifying, and investigating the fecundity of parasitic fungi of phytoplankton and the putative relationships established between hosts and their chytrid parasites. The method was applied to freshwater samples collected over two successive years during the terminal period of autumnal cyanobacterial blooms in a eutrophic lake. The study focused on the uncultured host-parasite couple Anabaena macrospora (cyanobacterium) and Rhizosiphon akinetum (Chytridiomycota).
View Article and Find Full Text PDFMany species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids).
View Article and Find Full Text PDFMicrocystis colonies are known to overwinter on the surface of the sediment of freshwater ecosystems. However, little is known about the genotypic and toxicological dynamics of Microcystis populations during this benthic life stage. In this study, we report a two-year-long survey of benthic populations of Microcystis, which had spent from a few days to more than six years in the sediment.
View Article and Find Full Text PDFThe benthic recruitment of Microcystis was simulated in vitro in order to characterize the colonies of Microcystis recruited and to study the impact of intracellular and extracellular microcystins (MCs), and the influence of colony size on the recruitment process. We observed recruitment dynamics consisting of a lag phase followed by a peak and then a return to low recruitment rates, mainly controlled by passive resuspension throughout the experiment, and by physiological processes during the recruitment peak. Ninety-seven percent of the Microcystis colonies recruited were <160 μm in maximum length, and their cells contained much greater amounts of MCs (0.
View Article and Find Full Text PDFMicrocystis aeruginosa is a toxic cyanobacterium, which is able to bloom in a wide range of freshwater ecosystems. By sequencing the Internal Transcribed Spacer (ITS) of the ribosomal operon, we compared the genetic composition of several French bloom-forming M. aeruginosa populations from two reservoirs located on the Loire River, at two sampling points located between these reservoirs, and finally in two ponds closely linked to this river.
View Article and Find Full Text PDFThe spatio-temporal distribution of benthic colonies of Microcystis aeruginosa in Grangent Reservoir (France) in 2000 was not homogeneous and appeared to be controlled by many external factors: lake depth, station morphometry, substratum and hydraulic regime (lacustrine or fluvial). A most important concentration of benthic colonies was found at deep sites with fine sediment or at sites where the sediment was rich in organic matter. In spite of a stable water level and a minimum flow during summer, the number of benthic colonies showed great variation in the lacustrine downstream part of the reservoir.
View Article and Find Full Text PDFNew method of sampling adapted to colonial cyanobacteria was developed on the Grangent reservoir (Loire, France). These prokaryotes were sampled using a filtering pump and were counted at laboratory under epifluorescence microscope. This method allowed us to follow the annual cycle of Microcystis aeruginosa, since benthic spring recruitment (cyanobacteria being used as inoculum) until autumnal sedimentation, and even revealed the presence of this cyanobacterian species in winter in the epilimnion.
View Article and Find Full Text PDF