Publications by authors named "Delphine Farmer"

Proton transfer reaction mass spectrometry (PTR-MS) is often employed to characterize gas-phase compounds in both indoor and outdoor environments. PTR-MS measurements are usually made without upstream chromatographic separation, so it can be challenging to differentiate between an ion of interest, its isomers, and fragmentation products from other species all detected at the same mass-to-charge ratio. These isomeric contributions and fragmentation interferences can confound the determination of accurate compound mixing ratios, the assignment of accurate chemical properties, and corresponding analyses of chemical fate.

View Article and Find Full Text PDF

In the indoor environment, occupants are exposed to air pollutants originating from continuous indoor sources and exchange with the outdoor air, with the highest concentration episodes dominated by activities performed indoors such as cooking and cleaning. Here we use the INdoor CHEMical model in Python (INCHEM-Py) constrained by measurements from the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, to investigate the impact of a bleach cleaning event and cooking on indoor air chemistry. Measurements of the concentrations of longer-lived organic and inorganic compounds, as well as measured photolysis rates, have been used as input for the model, and the modelled hydroxyl (OH) radicals, hydroperoxyl radicals, and nitrous acid (HONO) concentrations compared to the measured values.

View Article and Find Full Text PDF

Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOC) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOC and total particle phase WSOC (WSOC)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOC and WSOC inside a residential test facility in the house background and during scripted activities.

View Article and Find Full Text PDF

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (, cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (, gaseous ammonia or ozone) to more complex mixtures (, a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity.

View Article and Find Full Text PDF

Plant leaves and water drops residing on them interact with atmospheric oxidants, impacting the deposition and emission of trace gases and mediating leaf damage from air pollution. Characterizing the chemical composition and reactivity of the water-soluble material on leaf surfaces is thus essential for improving our understanding of atmosphere-biosphere interactions. However, the limited knowledge of sources and nature of these chemicals challenges sampling decisions.

View Article and Find Full Text PDF

Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves.

View Article and Find Full Text PDF

Cooking activities emit myriad low-volatility, semivolatile, and highly volatile organic compounds that together form particles that can accumulate to large indoor concentrations. Absorptive partitioning thermodynamics governs the particle-phase organic aerosol concentration mainly via temperature and sorbing mass impacts. Cooking activities can increase the organic sorbing mass by 1-2 orders of magnitude, increasing particle-phase concentrations and affecting emission rate calculations.

View Article and Find Full Text PDF

Energy-efficient residential building standards require the use of mechanical ventilation systems that replace indoor air with outdoor air. Transient outdoor pollution events can be transported indoors via the mechanical ventilation system and other outdoor air entry pathways and impact indoor air chemistry. In the spring of 2022, we observed elevated levels of NO (NO + NO) that originated outdoors, entering the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility through the mechanical ventilation system.

View Article and Find Full Text PDF

Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans.

View Article and Find Full Text PDF

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NO).

View Article and Find Full Text PDF

Cooking organic aerosol (COA) is frequently observed in urban field studies. Like other forms of organic aerosol, cooking emissions partition between gas and particle phases; a quantitative understanding of the species volatility governing this partitioning is essential to model the transport and fate of COA. However, few cooking-specific volatility measurements are available, and COA is often assumed to be semi-volatile.

View Article and Find Full Text PDF

Despite its importance as a radical precursor and a hazardous pollutant, the chemistry of nitrous acid (HONO) in the indoor environment is not fully understood. We present results from a comparison of HONO measurements from a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) and a laser photofragmentation/laser-induced fluorescence (LP/LIF) instrument during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign. Experiments during HOMEChem simulated typical household activities and provided a dynamic range of HONO mixing ratios.

View Article and Find Full Text PDF

Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities.

View Article and Find Full Text PDF

The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely unexplored. We found that, over 1 month, people's presence and activities profoundly reshaped the chemistry of a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds were distributed in a location-dependent manner.

View Article and Find Full Text PDF

Isocyanic acid (HNCO) and other nitrogen-containing volatile chemicals (organic isocyanates, hydrogen cyanide, nitriles, amines, amides) were measured during the House Observation of Microbial and Environmental Chemistry (HOMEChem) campaign. The indoor HNCO mean mixing ratio was 0.14 ± 0.

View Article and Find Full Text PDF

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory.

View Article and Find Full Text PDF

Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied.

View Article and Find Full Text PDF

Secondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework.

View Article and Find Full Text PDF

Coordination of efforts to assess the challenges and pain points felt by industries from around the globe working to reduce COVID-19 transmission in the indoor environment as well as innovative solutions applied to meet these challenges is mandatory. Indoor infectious viral disease transmission (such as coronavirus, norovirus, influenza) is a complex problem that needs better integration of our current knowledge and intervention strategies. Critical to providing a reduction in transmission is to map the four core technical areas of environmental microbiology, transmission science, building science, and social science.

View Article and Find Full Text PDF

Particle emissions from cooking are a major contributor to residential indoor air pollution and could also contribute to ambient concentrations. An important constituent of these emissions is light-absorbing carbon, including black carbon (BC) and brown carbon (BrC). This work characterizes the contributions of indoor and outdoor sources of BC and BrC to the indoor environment by concurrently measuring real-time concentrations of these air pollutants indoors and outdoors during the month-long HOMEChem study.

View Article and Find Full Text PDF

Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities.

View Article and Find Full Text PDF

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area.

View Article and Find Full Text PDF
Article Synopsis
  • Indoor air quality has traditionally been thought to be uniform, using single point measurements and box models to represent rooms or houses.
  • Recent advanced simulations and extensive measurements reveal that cleaning processes, like bleach use, create varying concentrations of harmful chlorinated compounds throughout a space.
  • These variations are influenced by factors like chemical reactions, surface interactions, and ventilation, which are crucial for understanding human exposure to pollutants and how indoor chemicals move outside.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionofv6a632khntj58ghr475qdt6nbiap8o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once