Recombinant proteins, particularly proteins used as therapeutics, are widely expressed for bioprocessing manufacturing processes. Mammalian cell lines represent the major host cells for bioproduction, according to their capacities of post-translational modifications and folding of secreted proteins. Many parameters can affect cell productivity, especially the rate of oxygen transfer.
View Article and Find Full Text PDFThe intensity of ischemia-reperfusion injury of the donor organ during the preservation phase and after anastomosis is acknowledged as being a key factor for long-term graft outcome. We previously showed that the addition of 5 g/L of the natural oxygen carrier HEMO2 Life was beneficial for the cold static preservation of kidney grafts in both University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate solutions. Herein, we refined these findings by evaluating HEMO2 Life at various dose levels in UW, both in vitro with endothelial cells and in vivo in a pig kidney autotransplantation preclinical model.
View Article and Find Full Text PDFPolyethylene glycol (PEG), a high-molecular-weight colloid present in new organ preservation solutions, protects against cold ischemia injuries leading to better graft function of transplanted organs. This protective effect cannot be totally explained by immuno-camouflaging property or signaling-pathway modifications. Therefore, we sought for an alternative mechanism dependent on membrane fluidity.
View Article and Find Full Text PDFIn organ transplantation, preservation injury is an important factor which could influence short-term and long-term graft outcome. The renal medulla is particularly sensitive to oxidant stress and ischemia-reperfusion injury (IRI). Using an autotransplant pig kidney model, we investigated renal function and medullary damage determined between day 1 and week 2 after 24- or 48-h cold storage in different preservation solutions: University of Wisconsin solution (UW), Hopital Edouard Herriot solution (a high Na+ version of UW), ECPEG (high Na+ preservation solution with PEG) and ICPEG (a high K+ version of ECPEG) with or without trimetazidine (TMZ).
View Article and Find Full Text PDFBackground: The renal medulla is particularly sensitive to oxidant stress and to ischaemia-reperfusion injury (IRI). In organ transplantation, delayed graft function is an important problem and cold ischaemia is thought to be the most important factor in short- and long-term complications. Our aim was to study cold-induced damage in proximal tubular segments and renal medulla osmolite excretion during use of various preservation solutions, and to clarify the role of trimetazidine (TMZ) in limiting renal dysfunction.
View Article and Find Full Text PDFThe detrimental role of oxidative stress has been widely described in tissue damage caused by ischemia-reperfusion. A nonenzymatic, reactive oxygen species-related pathway has been suggested to produce 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), an epimer of prostaglandin F(2alpha) (PGF(2alpha)), which has been proposed as an indicator of oxidative stress. Using an in vivo ischemia-reperfusion model in rat kidneys, we investigated intrarenal accumulation of 8-iso-PGF(2alpha) and PGF(2alpha).
View Article and Find Full Text PDFIn organ transplantation, ischemia-reperfusion injury (IRI) has been implicated in delayed graft function (DGF) as well as in short- and long-term complications. Using an autotransplant pig kidney model, changes in renal function and morphology were determined after different periods of cold ischemia in kidneys preserved in the University of Wisconsin solution (UW), high-Na(+) version of UW (HEH) or Celsior (CEL) a newly developed high-Na(+) solution, with or without trimetazidine (TMZ). Kidney function was better preserved in CEL, UW and particularly HEH in combination with TMZ, particularly after 48 and 72 h.
View Article and Find Full Text PDFIschemia-reperfusion injury (IRI) represents an allo-independent risk factor which favors chronic allograft nephropathy (CAN). Here we analyzed the influence of preservation solutions on the function of autotransplanted pig kidneys over 1-16 weeks after surgery. Kidneys were cold-flushed and cold-stored for 24 or 48 h either in University of Wisconsin (UW), modified-UW Hôpital Edouard Herriot, polyethylene glycol 20 kDa (PEG)-supplemented preservation solutions with low K+ (ECPEG) or high K+ (ICPEG) content.
View Article and Find Full Text PDFIschemia-reperfusion injury (IRI) is associated with an increased risk of acute rejection, delayed graft function, or chronic graft dysfunction. Mitochondria plays a central role in this process. Using an autotransplant pig kidney model, changes in renal function and morphology were determined after different periods of cold ischemia in kidneys preserved in the University of Wisconsin solution (UW), high-Na(+) version of UW (HEH) or Celsior (CEL) a newly developed high-Na(+) solution, with or without trimetazidine (TMZ).
View Article and Find Full Text PDF