The contribution of Diffusive Gradients in Thin films (DGT) passive sampling to continental water quality monitoring was assessed in a real measurement network (6 sampling campaigns, 17 stations). Ten metals/metalloids (Al, Zn, Ni, Cd, Cu, Pb, Cr, As, Se and Sb) were studied using the control laboratory's working conditions with grab and DGT passive sampling. The DGT field deployments were robust, with a 3% sampler loss rate and a <65% average relative deviation between duplicates.
View Article and Find Full Text PDFElution of Chelex® binding layers, commonly used for the diffusive gradients in thin films technique (DGT), is recognized as the most important contributor to the uncertainty of DGT measurements. Limiting uncertainty requires the use of optimized procedures and suitable elution recoveries (f ). This work therefore investigated elution robustness to propose improved strategies.
View Article and Find Full Text PDFThe DGT technique (diffusive gradients in thin films) is widely used for passive sampling of labile trace metals and metalloids in natural waters. Although development of fouling on the protective membranes is frequently observed, its effect on DGT sampling has been barely investigated. This study evaluates the influence of fouling on sampling of trace cationic metals Cd(II), Cu(II), Ni(II) and Pb(II) and oxyanions As(V), Cr(VI), Sb(V) and Se(VI).
View Article and Find Full Text PDFFew attempts have been made to sample labile chromium with the DGT passive sampler (Diffusive Gradients in Thin Films) and, currently, no single device allows the simultaneous determination of both Cr(III) and Cr(VI). In this work, a procedure based on only one device combined with innovative selective elution is evaluated to assess chromium speciation. A zirconium binding gel is used to accumulate both Cr(III) and Cr(VI).
View Article and Find Full Text PDF