Many drugs have been discontinued during phase II/III breast cancer clinical trials due to lack of clinical efficacy, indicating shortcomings in predictive value of preclinical data. Nutrient availability in the tumour cell microenvironment and the dimensionality of in vitro tumour cells likely impact on drug responsiveness. Global proteomics experiments were conducted to assess the impact of nutrient availability and dimensionality of culture.
View Article and Find Full Text PDFHuman epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis.
View Article and Find Full Text PDFThe FDA modernisation Act 2.0 marks a game-changing legislation enabling drug registration without the absolute requirement for the use of animals in safety toxicology assessment. We discuss landmark developments in the legislation under which the FDA operates and consider the implications of this most recent chapter in the evolution of the drug regulation pathway, focussing on new opportunities to embed microphysiological systems.
View Article and Find Full Text PDFThe prognosis for breast cancer patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumor as a result of the highly restrictive blood-brain barrier (BBB). While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and nonspecific, leading to severe neurotoxic side effects.
View Article and Find Full Text PDFBackground: Human epidermal growth factor receptor-2 (HER2)-targeted therapies prolong survival in HER2-positive breast cancer patients. Benefit stems primarily from improved control of systemic disease, but up to 50% of patients progress to incurable brain metastases due to acquired resistance and/or limited permeability of inhibitors across the blood-brain barrier. Neratinib, a potent irreversible pan-tyrosine kinase inhibitor, prolongs disease-free survival in the extended adjuvant setting, and several trials evaluating its efficacy alone or combination with other inhibitors in early and advanced HER2-positive breast cancer patients are ongoing.
View Article and Find Full Text PDFBreast cancer brain metastases remain largely incurable. Although several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immunocompromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours.
View Article and Find Full Text PDFCellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g.
View Article and Find Full Text PDFCopper homeostasis is tightly regulated in both prokaryotic and eukaryotic cells to ensure sufficient amounts for cuproprotein biosynthesis, while limiting oxidative stress production and toxicity. Over the last century, copper complexes have been developed as antimicrobials and for treating diseases involving copper dyshomeostasis (e.g.
View Article and Find Full Text PDFThere is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin ( Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) and .
View Article and Find Full Text PDFCellular senescence is characterised by the irreversible arrest of proliferation, a pro-inflammatory secretory phenotype and evasion of programmed cell death mechanisms. We report that senescence alters cellular iron acquisition and storage and also impedes iron-mediated cell death pathways. Senescent cells, regardless of stimuli (irradiation, replicative or oncogenic), accumulate vast amounts of intracellular iron (up to 30-fold) with concomitant changes in the levels of iron homeostasis proteins.
View Article and Find Full Text PDFControl of the biodistribution of radiolabeled peptides has proven to be a major challenge in their application as imaging agents for positron emission tomography (PET). Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution.
View Article and Find Full Text PDFCeruloplasmin (Cp) is a multicopper ferroxidase that is considered to be an important source of copper in milk for normal neonatal development. We investigated the expression, subcellular localization and secretion of Cp in PMC42-LA cell culture models representative of resting, lactating and suckled human mammary epithelia. Both secreted Cp (sCp) and plasma membrane associated glycosylphosphatidylinositol-linked Cp (GPI-Cp) were expressed in PMC42-LA cells.
View Article and Find Full Text PDFCopper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9).
View Article and Find Full Text PDFCopper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution.
View Article and Find Full Text PDFThis study reports the synthesis, [(123)I]radiolabeling, and biological profile of a new series of iodinated compounds for potential translation to the corresponding [(131)I]radiolabeled compounds for radionuclide therapy of melanoma. Radiolabeling was achieved via standard electrophilic iododestannylation in 60-90% radiochemical yield. Preliminary SPECT imaging demonstrated high and distinct tumor uptake of all compounds, as well as high tumor-to-background ratios compared to the literature compound [(123)I]4 (ICF01012).
View Article and Find Full Text PDFBackground: Therapeutics that target copper for the treatment of prostate cancer are being evaluated in human clinical trials. Elevated intracellular copper is considered to sensitize prostate cancer cells to certain copper-coordination compounds, especially those with ionophoric properties. While there is compelling in vitro evidence that prostate cancer cells accumulate intracellular copper, a corresponding status for copper in patient tissues has not been corroborated.
View Article and Find Full Text PDFUnlabelled: Ionizing radiation-induced DNA double-strand breaks (DSBs) can lead to cell death, genome instability, and carcinogenesis. Immunofluorescence detection of phosphorylated histone variant H2AX (γ-H2AX) is a reliable and sensitive technique to monitor external-beam ionizing radiation-induced DSBs in peripheral blood lymphocytes (PBLs). Here, we investigated whether γ-H2AX could be used as an in vivo marker to assess normal-tissue toxicity after extended internal irradiation with (177)Lu-DOTA-octreotate (LuTate) peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors.
View Article and Find Full Text PDFAlthough many preclinical studies have implicated β3 integrin receptors (αvβ3 and αIIbβ3) in cancer progression, β3 inhibitors have shown only modest efficacy in patients with advanced solid tumours. The limited efficacy of β3 inhibitors in patients could arise from our incomplete understanding of the precise function of β3 integrin and, consequently, inappropriate clinical application. Data from animal studies are conflicting and indicate heterogeneity with respect to the relative contributions of β3-expressing tumour and stromal cell populations in different cancers.
View Article and Find Full Text PDFThe transcription factor Foxp3 represents the most specific functional marker of CD4+ regulatory T cells (TRegs). However, previous reports have described Foxp3 expression in other cell types including some subsets of macrophages, although there are conflicting reports and Foxp3 expression in cells other than Treg is not well characterized. We performed detailed investigations into Foxp3 expression in macrophages in the normal tissue and tumor settings.
View Article and Find Full Text PDFUnlabelled: Early identification of tumor responses to treatment is crucial for devising more effective and safer cancer treatments. No widely applicable, noninvasive method currently exists for specifically detecting tumor cell death after cytotoxic treatment and thus for predicting treatment outcomes.
Methods: We have further characterized the targeting of the murine monoclonal antibody DAB4 specifically to dead tumor cells in vitro, in vivo, and in clinical samples.
Tumor intrinsic and extrinsic factors are thought to contribute to bone metastasis but little is known about how they cooperate to promote breast cancer spread to bone. We used the bone-metastatic 4T1BM2 mammary carcinoma model to investigate the cooperative interactions between tumor LM-511 and bone-derived soluble factors in vitro. We show that bone conditioned medium cooperates with LM-511 to enhance 4T1BM2 cell migration and invasion and is sufficient alone to promote survival in the absence of serum.
View Article and Find Full Text PDFThe use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.
View Article and Find Full Text PDFRadiation-induced brain injury occurs in many patients receiving cranial radiation therapy, and these deleterious effects are most profound in younger patients. Impaired neurocognitive functions in both humans and rodents are associated with inflammation, demyelination, and neural stem cell dysfunction. Here we evaluated the utility of lithium and a synthetic retinoid receptor agonist in reducing damage in a model of brain-focused irradiation in juvenile mice.
View Article and Find Full Text PDFPurpose: The objective of the study was to conjugate the DNA binding ligand para-[(125)I]-iodoHoechst to octreotate, and to explore the tumour targeting potential of this conjugate in the octreotate-somatostatin receptor system.
Methods: We synthesized a Hoechst analogue containing a tri-butylstannyl group in the para position of phenyl ring, conjugated it to the N-terminal amino group of octreotate and prepared (125)I-labelled conjugate by iododestannylation. We used the somatostatin receptor (SSTR2) over-expressing cell line A427-7 derived from its parent A427 human non-small cell lung carcinoma cell line to investigate SSTR2 affinity and receptor-mediated internalisation of the conjugate, and the mouse A427-7 tumour xenograft model for in vivo biodistribution studies of the radiolabelled conjugate.
Eur J Nucl Med Mol Imaging
April 2012
Purpose: The imaging potential of a new (18)F-labelled methionine derivative, S-(3-[(18)F]fluoropropyl)-D-homocysteine ((18)F-D-FPHCys), and its selectivity for amino acid transporter subtypes were investigated in vitro and by imaging of human tumour xenografts.
Methods: Expression of members of the system L (LAT isoforms 1-4 and 4F2hc) and ASCT (ASCT isoforms 1 and 2) amino acid transporter subclasses were assessed by quantitative real-time PCR in four human tumour models, including A431 squamous cell carcinoma, PC3 prostate cancer, and Colo 205 and HT-29 colorectal cancer lines. The first investigations for the characterization of (18)F-D-FPHCys were in vitro uptake studies by comparing it with [1-(14)C]-L-methionine ((14)C-MET) and in vivo by PET imaging.