Publications by authors named "Delphine Carbonnelle"

Marine macroalgae have attracted much attention in recent years as a valuable source of bioactive metabolites. The cytotoxic potential of the red alga collected from the Lebanese coast has been investigated on human breast cancer cells MCF-7. The crude extract of () was fractionated by column chromatography using a series of increasingly polar solvents (methylene chloride, acetone and methanol).

View Article and Find Full Text PDF

Background: The alteration of lipid metabolism in cancer cells is recognized as one of the most important metabolic hallmarks of cancer. Membrane rafts defined as plasma membrane microdomains enriched in cholesterol and sphingolipids serve as platforms for signaling regulation in cancer. The main purpose of this study was to evaluate the effect of the cholesterol metabolite, 4-cholesten-3-one, on lipid metabolism and membrane raft integrity in two breast cancer cell lines, MCF-7 and MDA-MB-231.

View Article and Find Full Text PDF

Background: It has amply been documented that mammary tumor cells may exhibit an increased lipogenesis. Biliary acids are currently recognized as signaling molecules in the intestine, in addition to their classical roles in the digestion and absorption of lipids. The aim of our study was to evaluate the impact of lithocholic acid (LCA) on the lipogenesis of breast cancer cells.

View Article and Find Full Text PDF

Background/aim: Lipid rafts are cholesterol-enriched microdomains of the plasma membrane. Recent studies have underlined that their integrity is critical for cancer cell survival. Liver X receptor (LXR) has a central role in cellular cholesterol homeostasis and its stimulation inhibits proliferation of several cancer cell lines.

View Article and Find Full Text PDF

MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5' region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway.

View Article and Find Full Text PDF

Despite progress in chemotherapeutic agents, non-small cell lung cancers (NSCLC) still have a poor survival rate. Thus, development of new therapeutic strategies, specifically against cancer cells is still required. For this purpose, we treated the non-small cell lung cancer cell line NSCLC-N6 with the natural product cucurbitacin D (CucD) - extracted from the plant Ecballium elaterium in order first to assess its in vitro cytotoxicity, but also to study the genetic changes that it could bring out.

View Article and Find Full Text PDF

Our previous studies on melanoma antigens identified two new polypeptides, named MELOE-1 and MELOE-2, that are involved in immunosurveillance. Intriguingly, these antigens are coded by distinct open reading frames (ORF) of the meloe mRNA which is significantly expressed only in the melanocytic lineage. In addition, MELOE-1 and -2 specific T cell clones recognized melanoma cells but very poorly normal melanocytes suggesting differential translation of meloe in normal vs tumor cells.

View Article and Find Full Text PDF

N-aryl-3-(indol-3-yl)propanamides were synthesized and their immunosuppressive activities were evaluated. This study highlighted the promising potency of 3-[1-(4-chlorobenzyl)-1H-indol-3-yl]-N-(4-nitrophenyl)propanamide 15 which exhibited a significant inhibitory activity on murine splenocytes proliferation assay in vitro and on mice delayed-type hypersensitivity (DTH) assay in vivo.

View Article and Find Full Text PDF

We previously identified an indole-3-propanamide derivative, 3-[1-(4-chlorobenzyl)indol-3-yl]-N-(pyridin-4-yl)propanamide (AD412), as a potential immunosuppressive agent. Here, we document that AD412 inhibited the proliferative response of CD3/CD28-stimulated human T cells without inhibiting their interleukin 2 (IL-2) production and also inhibited the proliferation of CTL-L2 cells in response to IL-2. These results prompted us to analyze the effect of our compound on the three main signaling pathways coupled to the IL-2 receptor.

View Article and Find Full Text PDF

Several N-pyridinyl(methyl)-indol-3-ylpropanamides were synthesized and pharmacological evaluations of their immunosuppressive potential were performed. Among thirteen compounds tested in vitro on murine T proliferation, three showed interesting inhibiting activity. For the most active compound (propanamide 18), immunosuppressive activity was documented both in vitro on human T lymphocytes proliferation and in vivo on mice delayed-type hypersensitivity.

View Article and Find Full Text PDF

The immunosuppressive properties of a benzamide derivative, JM34, previously characterized as an anti-inflammatory compound are described. The immunosuppressive potential of JM34 was evidenced by inhibition of PBMC proliferation in vitro with an IC50 of 20 microM. In contrast with classical immunosuppressive drugs, JM34 affected neither cytokine production nor IL-2R expression from activated T cell clones, and displayed only moderate inhibition of IL-2-induced or anti-CD3/anti-CD28-induced proliferation.

View Article and Find Full Text PDF

New N1-mono and N1, N2-disubstituted imidazolidin-2-one with a significant immunosuppressive activity have been discovered. Among the 17 synthesized and tested compounds, five of them showed maximal inhibition of proliferation of concanavallin A (Con A)- stimulated splenocytes at 90 microM, identical to that obtained with cyclosporin A (CsA) at 5 microM, an optimal concentration.

View Article and Find Full Text PDF

Non-small cell lung cancers remain particularly refractory to current treatments. Thus, characterisation of new molecular targets whose expression during chemotherapy could stop tumour growth, is required. In order to identify these new targets, we applied RT-PCR differential display (RT-PCR-DD) to a non-small cell lung cancer line (NSCLC-N6) treated by an original chemical substance, VT1, capable of arresting the proliferation of NSCLC-N6 cells in G1 phase.

View Article and Find Full Text PDF