Acta Crystallogr D Biol Crystallogr
November 2011
The identification of crystallization conditions for biological molecules largely relies on a trial-and-error process in which a number of parameters are explored in large screening experiments. Currently, construct design and sample formulation are recognized as critical variables in this process and often a number of protein variants are assayed for crystallization either sequentially or in parallel, which adds complexity to the screening process. Significant effort is dedicated to sample characterization and quality-control experiments in order to identify at an early stage and prioritize those samples which would be more likely to crystallize.
View Article and Find Full Text PDFCrystallogenesis, usually based on the vapor diffusion method, is currently considered one of the most difficult steps in macromolecular X-ray crystallography. Due to the increasing number of crystallization assays performed by protein crystallographers, several automated analysis methods are under development. Most of these methods are based on microscope images and shape recognition.
View Article and Find Full Text PDFHuman centromere-associated protein E, a member of the kinesin superfamily, is a microtubule-dependent motor protein involved in cell division that has been localized transiently to the kinetochore. The protein is thought to be responsible for the correct attachment and positioning of chromosomes to the mitotic spindle during the metaphase. The 312 kDa protein comprises four different domains.
View Article and Find Full Text PDF