Publications by authors named "Delphin C"

Running is the basis of many sports and has highly beneficial effects on health. To increase the understanding of running, DSPro insoles were developed to collect running parameters during tasks. However, no validation has been carried out for running gait analysis.

View Article and Find Full Text PDF

Used on clinical and sportive context, three-dimensional motion analysis is considered as the gold standard in the biomechanics field. The proposed dataset has been established on 30 asymptomatic young participants. Volunteers were asked to walk at slow, comfortable and fast speeds, and to run at comfortable and fast speeds on overground and treadmill using shoes.

View Article and Find Full Text PDF

Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth.

View Article and Find Full Text PDF

Introduction: Spasticity is a frequent disabling consequence following a stroke. Local muscle vibrations (LMVs) have been proposed as a treatment to address this problem. However, little is known about their clinical and neurophysiological impacts when used repeatedly during the subacute phase post-stroke.

View Article and Find Full Text PDF

Neuronal microtubules have long been known to contain intraluminal particles, called MIPs (microtubule inner proteins), most likely involved in the extreme stability of microtubules in neurons. This chapter describes a cryo-electron microscopy-based assay to visualize microtubules containing neuronal MIPs. We present two protocols to prepare MIPs-containing microtubules, using either in vitro microtubule polymerization assays or extraction of microtubules from mouse hippocampal neurons in culture.

View Article and Find Full Text PDF

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus.

View Article and Find Full Text PDF

Mutations in the genes that encode α- and β-tubulin underlie many neurological diseases, most notably malformations in cortical development. In addition to revealing the molecular basis for disease etiology, studying such mutations can provide insight into microtubule function and the role of the large family of microtubule effectors. In this study, we use budding yeast to model one such mutation-Gly436Arg in α-tubulin, which is causative of malformations in cortical development-in order to understand how it impacts microtubule function in a simple eukaryotic system.

View Article and Find Full Text PDF

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified.

View Article and Find Full Text PDF

Microtubules (MT) are the most rigid component of the cytoskeleton. Nevertheless, they often appear highly curved in the cellular context and the mechanisms governing their overall shape are poorly understood. Currently, microtubule analysis relies primarily on electron microscopy for its high resolution and Total Internal Reflection Fluorescence (TIRF) microscopy for its ability to image live fluorescently-labelled microtubules and associated proteins.

View Article and Find Full Text PDF

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work.

View Article and Find Full Text PDF

Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines.

View Article and Find Full Text PDF

Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains.

View Article and Find Full Text PDF

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered.

View Article and Find Full Text PDF

Reversible detyrosination of α-tubulin is crucial to microtubule dynamics and functions, and defects have been implicated in cancer, brain disorganization, and cardiomyopathies. The identity of the tubulin tyrosine carboxypeptidase (TCP) responsible for detyrosination has remained unclear. We used chemical proteomics with a potent irreversible inhibitor to show that the major brain TCP is a complex of vasohibin-1 (VASH1) with the small vasohibin binding protein (SVBP).

View Article and Find Full Text PDF

Refilins (RefilinA and RefilinB) are members of a novel family of Filamin binding proteins that function as molecular switches to conformationally alter the Actin filament network into bundles. We show here that Refilins are extremely labile proteins. An N-terminal PEST/DSG(X)S motif mediates ubiquitin-independent rapid degradation.

View Article and Find Full Text PDF

ATAD3 (ATPase family AAA-Domain containing protein 3) is a mitochondrial inner membrane ATPase with unknown but vital functions. Initial researches have focused essentially on the major p66-ATAD3 isoform, but other proteins and mRNAs are described in the data banks. Using a set of anti-peptide antibodies and by the use of rodent and human cell lines and organs, we tried to detail ATAD3 gene expression profiles and to verify the existence of the various ATAD3 isoforms.

View Article and Find Full Text PDF

Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified.

View Article and Find Full Text PDF

The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain.

View Article and Find Full Text PDF

During the postnatal development, astrocytic cells in the neocortex progressively lose their neural stem cell (NSC) potential, whereas this peculiar attribute is preserved in the adult subventricular zone (SVZ). To understand this fundamental difference, many reports suggest that adult subventricular GFAP-expressing cells might be maintained in immature developmental stage. Here, we show that S100B, a marker of glial cells, is absent from GFAP-expressing cells of the SVZ and that its onset of expression characterizes a terminal maturation stage of cortical astrocytic cells.

View Article and Find Full Text PDF

The Annexin2 tetramer (A2t), which consists of two Annexin2 molecules bound to a S100A10 dimer, is implicated in membrane-trafficking events. Here, we showed using a yeast triple-hybrid experiment and in vitro binding assay that Annexin2 is required for strong binding of S100A10 to the C-terminal domain of the protein Ahnak. We also revealed that this effect involves only the Annexin2 N-terminal tail, which is implicated in S100A10/Annexin2 tetramerization.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid.

View Article and Find Full Text PDF

Remodelling of the plasma membrane cytoarchitecture is crucial for the regulation of epithelial cell adhesion and permeability. In Madin-Darby canine kidney cells, the protein AHNAK relocates from the cytosol to the cytosolic surface of the plasma membrane during the formation of cell-cell contacts and the development of epithelial polarity. This targeting is reversible and regulated by Ca(2+)-dependent cell-cell adhesion.

View Article and Find Full Text PDF

Here we report a detailed analysis of the expression and localization of the giant protein AHNAK in adult mouse tissues. We show that AHNAK is widely expressed in muscle cells, including cardiomyocytes, smooth muscle cells, skeletal muscle, myoepithelium, and myofibroblasts. AHNAK is also specifically expressed in epithelial cells of most lining epithelium, but is absent in epithelium with more specialized secretory or absorptive functions.

View Article and Find Full Text PDF

The Zn(2+)- and Ca(2+)-binding S100B protein is implicated in multiple intracellular and extracellular regulatory events. In glial cells, a relationship exists between cytoplasmic S100B accumulation and cell morphological changes. We have identified the IQGAP1 protein as the major cytoplasmic S100B target protein in different rat and human glial cell lines in the presence of Zn(2+) and Ca(2+).

View Article and Find Full Text PDF

Transformation of rat embryo fibroblast clone 6 cells by ras and temperature-sensitive p53val(135) is reverted by ectopic expression of the calcium- and zinc-binding protein S100B. In an attempt to define the molecular basis of the S100B action, we have identified the giant phosphoprotein AHNAK as the major and most specific Ca(2+)-dependent S100B target protein in rat embryo fibroblast cells. We next characterized AHNAK as a major Ca(2+)-dependent S100B target protein in the rat glial C6 and human U-87MG astrocytoma cell lines.

View Article and Find Full Text PDF