Kynurenic acid (KYNA) is an endogenous catabolite of tryptophan that has been found to demonstrate neuroprotective properties in psychiatric disorders. Recently, accumulating data have suggested that KYNA may also play a significant role in various metabolic diseases by stimulating energy metabolism in adipose tissue and muscle. However, whether KYNA can serves as an anti-diabetes agent has yet to be studied.
View Article and Find Full Text PDFType 2 diabetes is associated with an inflammatory phenotype in the pancreatic islets. We previously demonstrated that proinflammatory cytokines potently activate the tryptophan/kynurenine pathway (TKP) in INS-1 cells and in normal rat islets. Here we examined: (1) the TKP enzymes expression in the diabetic GK islets; (2) the TKP enzymes expression profiles in the GK islets before and after the onset of diabetes; (3) The glucose-stimulated insulin secretion (GSIS) in vitro in GK islets after KMO knockdown using specific morpholino-oligonucleotides against KMO or KMO blockade using the specific inhibitor Ro618048; (4) The glucose tolerance and GSIS after acute in vivo exposure to Ro618048 in GK rats.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2022
Kynurenic acid (KYNA) is an important bio-active product of tryptophan metabolism. In addition to its well-known neuroprotective effects on mental health disorders, it has been proposed as a bio-marker for such metabolic diseases as atherosclerosis and diabetes. Emerging evidence suggests that KYNA acts as a signaling molecule controlling the networks involved in the balance of energy store and expenditure through GPR35 and AMPK signaling pathway.
View Article and Find Full Text PDF