Publications by authors named "Delon J"

Autoinflammatory diseases (AID) are conditions leading to a hyperactivation of innate immunity without any underlying infection, and may be poly- (e.g. Still's disease) or monogenic.

View Article and Find Full Text PDF

We have identified a new inherited bone marrow (BM) failure syndrome with severe congenital neutropenia (CN) caused by autosomal recessive mutations in the coatomer protein complex I (COPI) subunit zeta 1 (COPZ1) gene. A stop-codon COPZ1 mutation and a missense mutation were found in three patients from two unrelated families. While two affected siblings with a stop-codon COPZ1 mutation suffered from congenital neutropenia (CN) that involves other hematological lineages, and non-hematological tissues, the patient with a missense COPZ1 mutation had isolated neutropenia.

View Article and Find Full Text PDF

Most autoinflammatory diseases are caused by mutations in innate immunity genes. Previously, four variants in the RHO GTPase CDC42 were discovered in patients affected by syndromes generally characterized by neonatal-onset of cytopenia and auto-inflammation, including hemophagocytic lymphohistiocytosis and rash in the most severe form (NOCARH syndrome). However, the mechanisms responsible for these phenotypes remain largely elusive.

View Article and Find Full Text PDF
Article Synopsis
  • * A newly identified group of AIDs is marked by high levels of interleukin 18 (IL-18), a key pro-inflammatory cytokine that influences immune cell behavior and responses.
  • * The review discusses how IL-18 is relevant in diagnosing and treating AIDs like Still's disease and those caused by specific gene mutations, noting that measuring IL-18 can help with diagnosis and therapy targeting IL-18 is being researched.
View Article and Find Full Text PDF

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.

View Article and Find Full Text PDF

This article presents a computational framework for the concise encoding of an ensemble of persistence diagrams, in the form of weighted Wasserstein barycenters Turner et al. (2014), Vidal et al. (2020) of a dictionary of atom diagrams.

View Article and Find Full Text PDF

Auto-inflammatory diseases (AIDs) are diseases resulting from an inappropriate activation of innate immunity in the absence of any infection. The field of monogenic AIDs is constantly expanding, with the discovery of new pathologies and pathophysiological mechanisms thanks to pangenomic sequencing. Actinopathies with auto-inflammatory manifestations are a new emerging group of AIDs, linked to defects in the regulation of the actin cytoskeleton dynamics.

View Article and Find Full Text PDF

Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types.

View Article and Find Full Text PDF

This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees.

View Article and Find Full Text PDF

T lymphocyte migration is an essential step to mounting an efficient immune response. The rapid and random motility of these cells which favors their sentinel role is conditioned by chemokines as well as by the physical environment. Morphological changes, underlaid by dynamic actin cytoskeleton remodeling, are observed throughout migration but especially when the cell modifies its trajectory.

View Article and Find Full Text PDF

Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs.

View Article and Find Full Text PDF

We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse, we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration . We next aimed at understanding, at the molecular level, how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation.

View Article and Find Full Text PDF

Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice.

View Article and Find Full Text PDF

HIV-1-infected macrophages participate in virus dissemination and establishment of virus reservoirs in host tissues, but the mechanisms for virus cell-to-cell transfer to macrophages remain unknown. Here, we reveal the mechanisms for cell-to-cell transfer from infected T cells to macrophages and virus spreading between macrophages. We show that contacts between infected T lymphocytes and macrophages lead to cell fusion for the fast and massive transfer of CCR5-tropic viruses to macrophages.

View Article and Find Full Text PDF

Unlabelled: The variable regions (VHHs) of two heavy chain-only antibodies, JM2 and JM4, from llamas that have been immunized with a trimeric gp140 bound to a CD4 mimic have been recently isolated (here referred to as VHH JM2 and VHH JM4, respectively). JM2 binds the CD4-binding site of gp120 and neutralizes HIV-1 strains from subtypes B, C, and G. JM4 binds gp120 and neutralizes HIV-1 strains from subtypes A, B, C, A/E, and G in a CD4-dependent manner.

View Article and Find Full Text PDF

Cell quiescence is controlled by regulated genome-encoded programs that actively express genes which are often down-regulated or inactivated in transformed cells. Among them is FoxO1, a transcription factor that imposes quiescence in several cell types, including T lymphocytes. In these cells, the FAM65B encoding gene is a major target of FOXO1.

View Article and Find Full Text PDF

This paper addresses the problem of tonal fluctuation in videos. Due to the automatic settings of consumer cameras, the colors of objects in image sequences might change over time. We propose here a fast and computationally light method to stabilize this tonal appearance, while remaining robust to motion and occlusions.

View Article and Find Full Text PDF

We provide a theoretical analysis of some empirical facts about the second order spatiochromatic structure of natural images in color. In particular, we show that two simple assumptions on the covariance matrices of color images yield eigenvectors made by the Kronecker product of Fourier features times the triad given by luminance plus color opponent channels. The first of these assumptions is second order stationarity while the second one is commutativity between color correlation matrices.

View Article and Find Full Text PDF

This paper introduces a new approach for the automatic estimation of illuminants in a digital color image. The method relies on two assumptions. First, the image is supposed to contain at least a small set of achromatic pixels.

View Article and Find Full Text PDF

Cells respond to chemokine stimulation by losing their round shape in a process called polarization, and by altering the subcellular localization of many proteins. Classic imaging techniques have been used to study these phenomena. However, they required the manual acquisition of many cells followed by time consuming quantification of the morphology and the co-localization of the staining of tens of cells.

View Article and Find Full Text PDF

Forkhead box O (FOXO) transcription factors favor both T cell quiescence and trafficking through their control of the expression of genes involved in cell cycle progression, adhesion, and homing. In this article, we report that the product of the fam65b gene is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that family with sequence similarity 65 member b (Fam65b) binds the small GTPase RhoA via a noncanonical domain and represses its activity by decreasing its GTP loading.

View Article and Find Full Text PDF

Gestalt theory gives a list of geometric grouping laws that could in principle give a complete account of human image perception. Based on an extensive thesaurus of clever graphical images, this theory discusses how grouping laws collaborate, and conflict toward a global image understanding. Unfortunately, as shown in the bibliographical analysis herewith, the attempts to formalize the grouping laws in computer vision and psychophysics have at best succeeded to compute individual partial structures (or partial gestalts), such as alignments or symmetries.

View Article and Find Full Text PDF