Background: The goal of this study is to evaluate germline genetic variants in African American men with metastatic prostate cancer as compared to those in Caucasian men with metastatic prostate cancer in an effort to understand the role of genetic factors in these populations.
Methods: African American and Caucasian men with metastatic prostate cancer who had germline testing using multigene panels were used to generate comparisons. Germline genetic results, clinical parameters, and family histories between the two populations were analyzed.
Airborne fine and ultrafine particulate matter (PM) are often generated through widely-used thermal processes such as the combustion of fuels or the thermal decomposition of waste. Residents near Superfund sites are exposed to PM through the inhalation of windblown dust, ingestion of soil and sediments, and inhalation of emissions from the on-site thermal treatment of contaminated soils. Epidemiological evidence supports a link between exposure to airborne PM and an increased risk of cardiovascular and pulmonary diseases.
View Article and Find Full Text PDFThis paper systematically investigates how environmentally persistent free radicals (EPFRs) are formed in a phenol contaminated model soil. Poly--phenylene (PPP) modified and copper-loaded montmorillonite (MMT) clays were developed and used as models of soil organic matter and the clay mineral component, respectively, with phenol being employed as a precursor pollutant. The polymer modification of the clays was carried out via surface-confined Kumada catalyst-transfer chain-growth polymerization.
View Article and Find Full Text PDFEnvironmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM.
View Article and Find Full Text PDFChlorinated aromatics undergo surface-mediated reactions with metal oxides to form Environmentally Persistent Free Radicals (EPFRs) which can further react to produce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Previous work using laboratory-made fly ash surrogates composed of transition metal oxides deposited on silica powder has confirmed their ability to mimic fly ash in the production of PCDD/Fs. However, little is known about the propensity of aluminas and aluminosilicates, other components of fly ash, to form PCDD/Fs.
View Article and Find Full Text PDFLow Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1--MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron (III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)O nanoparticles clusters, characterized by g-factors of 2.
View Article and Find Full Text PDFPhenol and its derivatives (phenol, o-, m-, p-cresols, catechol, hydroquinone, methoxy substituted phenols, etc. referred to as phenolic compounds or phenols) are well-known toxicants that exist in the environment and affect both human and natural ecosystems. This study explores quantitatively the yields of phenolic compounds from the thermal degradation (pyrolysis and oxidative pyrolysis) of common tobacco biomass components (lignin, tyrosine, ethyl cellulose, sodium alginate, and laminarin) as well as some mixtures (lignin/tyrosine, ethyl cellulose/tyrosine and sodium alginate/tyrosine) considered important in high temperature cooking, tobacco smoking, and forest fires.
View Article and Find Full Text PDFEnviron Sci Technol
December 2014
The discrepancies between polychlorinated dibenzo-p-dioxin to polychlorinated dibenzofuran (PCDD to PCDF) ratios in laboratory and field studies in the exhaust of combustion sources are not fully explained by available formation models. In this paper we present the results of experimental studies of the surface mediated formation of PCDD/F at the conditions mimicking the combustion cool zone from a mixture of 1,2-dichlorobenzene (1,2-DCBz) and 2-monochlorophenol (2-MCP) over a model surface consisting of 5% CuO/Silica. The PCDD to PCDF ratio was found to be strongly dependent on the ratio of chlorinated benzenes to chlorinated phenols and oxygen content.
View Article and Find Full Text PDFAdditional experimental evidence is presented for in vitro generation of hydroxyl radicals because of redox cycling of environmentally persistent free radicals (EPFRs) produced after adsorption of 2-monochlorophenol at 230 °C (2-MCP-230) on copper oxide supported by silica, 5% Cu(II)O/silica (3.9% Cu). A chemical spin trapping agent, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed.
View Article and Find Full Text PDFCombustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.
View Article and Find Full Text PDFWe have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation.
View Article and Find Full Text PDFEnvironmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.
View Article and Find Full Text PDFThe 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15 to 18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists, and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise.
View Article and Find Full Text PDFThe identity of radical species associated with particulate formed from the oxidative pyrolysis of 1-methylnaphthalene (1-MN) was investigated using low temperature matrix isolation electron paramagnetic resonance spectroscopy (LTMI-EPR), a specialized technique that provided a method of sampling and analysis of the gas-phase paramagnetic components. A superimposed EPR signal was identified to be a mixture of organic radicals (carbon and oxygen-centered) and soot. The carbon-centered radicals were identified as a mixture of the resonance-stabilized indenyl, cyclopentadienyl, and naphthalene 1-methylene radicals through the theoretical simulation of the radical's hyperfine structure.
View Article and Find Full Text PDFThe fractional pyrolysis of Bright tobacco was performed in nitrogen atmosphere over the temperature range of 240 - 510 °C in a specially constructed, high temperature flow reactor system. Electron paramagnetic resonance (EPR) spectroscopy was used to analyze the free radicals in the initially produced total particular matter (TPM) and in TPM after exposure to ambient air (aging). Different filters have been used to collect TPM from tobacco smoke: cellulosic, cellulose nitrate, cellulose acetate, nylon, Teflon and Cambridge.
View Article and Find Full Text PDFWe previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington.
View Article and Find Full Text PDFParticulate matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments.
View Article and Find Full Text PDFHydroxyl radicals were generated from an aqueous suspension of ambient PM2.5 and detected utilizing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap coupled with electron paramagnetic resonance (EPR) spectroscopy. Results from this study suggested the importance of environmentally persistent free radicals (EPFRs) in PM2.
View Article and Find Full Text PDFThe thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported.
View Article and Find Full Text PDFEnviron Sci Technol
August 2013
For the first time, an expansive study into the concentration and extended decay behavior of environmentally persistent free radicals in PM2.5 was performed. Results from this study revealed three types of radical decay-a fast decay, slow decay, and no decay-following one of four decay patterns: a relatively fast decay exhibiting a 1/e lifetime of 1-21 days accompanied by a slow decay with a 1/e lifetime of 21-5028 days (47% of samples); a single slow decay including a 1/e lifetime of 4-2083 days (24% of samples); no decay (18% of samples); and a relatively fast decay displaying an average 1/e lifetime of 0.
View Article and Find Full Text PDFTar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.
View Article and Find Full Text PDFThe thermal degradation of tyrosine at a residence time of 0.2s was conducted in a tubular flow reactor in flowing N2 and 4% O2 in N2 for a total pyrolysis time of 3min. The fractional pyrolysis technique, in which the same sample was heated continuously at each pyrolysis temperature, was applied.
View Article and Find Full Text PDFHealth Facil Manage
February 2013
The frequency of milk-alkali syndrome decreased rapidly after the development of histamine-2 antagonists and proton pump inhibitors for the treatment of peptic ulcer disease; however, the availability and overconsumption of antacids and calcium supplements can still place patients at risk (D. P. Beall et al.
View Article and Find Full Text PDFThe health impacts of airborne particulate matter (PM) are of global concern, and the direct implications to the development/exacerbation of lung disease are immediately obvious. Most studies to date have sought to understand mechanisms associated with PM exposure in adults/adult animal models; however, infants are also at significant risk for exposure. Infants are affected differently than adults due to drastic immaturities, both physiologically and immunologically, and it is becoming apparent that they represent a critically understudied population.
View Article and Find Full Text PDF