Eur Phys J D At Mol Opt Phys
December 2024
Abstract: Prerequisites for the goal of studying long-lived, magnetically confined, electron-positron pair plasmas in the laboratory include the injection of both species into the trap, long trapping times, and suitable diagnostic methods. Here we report recent progress on these tasks achieved in a simple dipole trap based on a supported permanent magnet. For the injection of electrons, both an drift technique (of a 2- A, 6-eV beam) and "edge injection" (from a filament emitting a few mA and biased to some tens of volts) have been demonstrated; the former is suitable for low-density beams with smaller spatial and velocity spreads, while the latter employs fluctuations arising from collective behavior.
View Article and Find Full Text PDFWe demonstrate the efficient injection of a pulsed positron beam into a magnetic dipole trap and investigate the ensuing particle dynamics in the inhomogeneous electric and magnetic fields. Bunches of ∼10^{5}e^{+} were transferred from a buffer-gas trap into the field of a permanent magnet using a lossless E×B drift technique. The Δt≈0.
View Article and Find Full Text PDFFast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.
View Article and Find Full Text PDFSARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge.
View Article and Find Full Text PDFAn electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV).
View Article and Find Full Text PDFIn this study, polypyrrole nanotubes (PPy-NT) and gold nanoparticles (AuNPs) were electrochemically synthesized to form a hybrid material and used as an electroactive layer for the attachment of proteins for the construction of a high-performance biosensor. Besides the enhancement of intrinsic conductivity of the PPy-NT, the AuNPs act as an anchor group for the formation of self-assembly monolayers (SAMs) from the gold-sulfur covalent interaction between gold and Mercaptopropionic acid (MPA). This material was used to evaluate the viability and performance of the platform developed for biosensing, and three different biological approaches were tested: first, the Avidin-HRP/Biotin couple and characterizations were made by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), wherein we detected Biotin in a linear range of 100-900 fmol L.
View Article and Find Full Text PDFThe rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity.
View Article and Find Full Text PDFNitric oxide (NO) molecules initially traveling at 795 m/s in pulsed supersonic beams have been photoexcited to long-lived hydrogenic Rydberg-Stark states, decelerated and electrostatically trapped in a cryogenically cooled, chip-based transmission-line Rydberg-Stark decelerator. The decelerated and trapped molecules were detected in situ by pulsed electric field ionization. The operation of the decelerator was validated by comparison of the experimental data with the results of numerical calculations of particle trajectories.
View Article and Find Full Text PDFMore than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters. Censuses of the nearby Universe have used absorption line spectroscopy to observe the 'invisible' baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe's volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas in denser regions near galaxies.
View Article and Find Full Text PDFHigh Rydberg states of nitric oxide (NO) with principal quantum numbers between 40 and 100 and lifetimes in excess of 10 µs have been prepared by resonance enhanced two-color two-photon laser excitation from the X Π ground state through the A Σ intermediate state. Molecules in these long-lived Rydberg states were detected and characterized 126 µs after laser photoexcitation by state-selective pulsed electric field ionization. The laser excitation and electric field ionization data were combined to construct two-dimensional spectral maps.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPresent-day galaxies are surrounded by cool and enriched halo gas extending for hundreds of kiloparsecs. This halo gas is thought to be the dominant reservoir of material available to fuel future star formation, but direct constraints on its mass and physical properties have been difficult to obtain. We report the detection of a fast radio burst (FRB 181112), localized with arcsecond precision, that passes through the halo of a foreground galaxy.
View Article and Find Full Text PDFHelium atoms in high- and low-field-seeking Rydberg states with linear and quadratic Stark shifts have been confined in two dimensions and guided over a distance of 150 mm using time-varying inhomogeneous electric fields. This was achieved with an electrode structure composed of four parallel cylindrical rods to which voltages were applied to form oscillating and rotating saddle-point fields. These two modes of operation result in time-averaged pseudopotentials that confine samples in high- and low-field-seeking states about the axis of the device.
View Article and Find Full Text PDFThe binary neutron-star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of about 41 megaparsecs from Earth. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual increase in the emission with time (proportional to t) to a peak about 150 days after the merger event, followed by a relatively rapid decline. So far, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (also called a structured jet).
View Article and Find Full Text PDFEinstein's theory of gravity-the general theory of relativity-is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity, the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies are limited by the weak self-gravity of the bodies, and tests using pulsar-white-dwarf binaries have been limited by the weak gravitational pull of the Milky Way.
View Article and Find Full Text PDFGW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis).
View Article and Find Full Text PDFGravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27.
View Article and Find Full Text PDFWe report experiments in which positronium (Ps) atoms were guided using inhomogeneous electric fields. Ps atoms in Rydberg-Stark states with principal quantum number n=10 and electric dipole moments up to 610 D were prepared via two-color two-photon optical excitation in the presence of a 670 V cm^{-1} electric field. The Ps atoms were created at the entrance of a 0.
View Article and Find Full Text PDFCosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies.
View Article and Find Full Text PDFWe show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n=2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.
View Article and Find Full Text PDFRev Sci Instrum
October 2015
We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10(5) positrons at a rate of 0.5-10 Hz.
View Article and Find Full Text PDFRydberg positronium (Ps) atoms have been prepared in selected Stark states via two-step (1s→2p→nd/ns) optical excitation. Two methods have been used to achieve Stark-state selection: a field ionization filter that transmits the outermost states with positive Stark shifts, and state-selected photoexcitation in a strong electric field. The former is demonstrated for n=17 and 18 while the latter is performed for n=11 in a homogeneous electric field of 1.
View Article and Find Full Text PDFGravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions.
View Article and Find Full Text PDF