Publications by authors named "Dellarole M"

Vector-borne diseases, constituting over 17 % of infectious diseases, are caused by parasites, viruses, and bacteria, and their prevalence is shaped by environmental and social factors. Dengue virus (DENV) and Zika virus (ZIKV), some of the most prevalent infectious agents of this type of diseases, are transmitted by mosquitoes belonging to the genus Aedes. The highest prevalence is observed in tropical regions, inhabited by around 3 billion people.

View Article and Find Full Text PDF

All enveloped viruses enter cells by fusing their envelope with a target cell membrane while avoiding premature fusion with membranes of the producer cell-the latter being particularly important for viruses that bud at internal membranes. Flaviviruses bud in the endoplasmic reticulum, are transported through the TGN to reach the external milieu, and enter other cells via receptor-mediated endocytosis. The trigger for membrane fusion is the acidic environment of early endosomes, which has a similar pH to the TGN of the producer cell.

View Article and Find Full Text PDF

The flavivirus envelope glycoproteins prM and E drive the assembly of icosahedral, spiky immature particles that bud across the membrane of the endoplasmic reticulum. Maturation into infectious virions in the trans-Golgi network involves an acid-pH-driven rearrangement into smooth particles made of (prM/E) dimers exposing a furin site for prM cleavage into "pr" and "M". Here we show that the prM "pr" moiety derives from an HSP40 cellular chaperonin.

View Article and Find Full Text PDF

The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL).

View Article and Find Full Text PDF
Article Synopsis
  • Direct interactions between bacterial glycans and host cell glycans play a crucial role in the attachment of pathogenic bacteria, such as the Gram-negative bacterium responsible for acute rectocolitis, to epithelial cells.
  • Researchers discovered that nonactivated CD4 T lymphocytes can be made susceptible to the bacteria by introducing sialylated glycosphingolipids, making them behave like activated T cells and allowing them to bind to the bacteria.
  • This binding is essential for the bacteria to inject effects into the host cells, with the process relying on the polymerization of actin, highlighting the importance of glycan interactions in bacterial pathogenesis and host specificity.
View Article and Find Full Text PDF

Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE).

View Article and Find Full Text PDF
Article Synopsis
  • * The authors present a structural and energetic map of the protein pp32 by combining NMR data with molecular dynamics simulations, revealing that the main folding barrier is broad and occurs near the unfolded state.
  • * Their findings indicate the presence of a disordered intermediate in the N-terminal region during folding and suggest that changes in temperature significantly influence the population of this intermediate, providing a comprehensive view of protein folding mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the thermal unfolding of the Dengue 4 envelope protein domain 3 (DEN4 ED3) using differential scanning calorimetry (DSC) and finds it exhibits reversible unfolding with two distinct endothermic peaks across a temperature range of 10 to 120 °C.
  • Analytical ultracentrifugation confirmed that DEN4 ED3 exists as a monomer at 25 °C, while thermodynamic analysis revealed that increased protein concentration leads to the formation of unfolded tetramers around 80-90 °C, which further dissociate into monomers at higher temperatures.
  • The researchers created a DEN4 ED3 variant by mutating Val 380 to less
View Article and Find Full Text PDF

Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of progress has been made in recent years towards this goal, a number of important questions remain. These include characterizing the structural, thermodynamic and dynamic properties of the barriers between conformational states on the protein energy landscape, understanding the sequence dependence of folding cooperativity, defining more clearly the role of solvation in controlling protein stability and dynamics and probing the high energy thermodynamic states in the native state basin and their role in misfolding and aggregation.

View Article and Find Full Text PDF

The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy.

View Article and Find Full Text PDF

Carbohydrate recognition is essential for growth, cell adhesion and signalling in all living organisms. A highly conserved carbohydrate binding module, LysM, is found in proteins from viruses, bacteria, fungi, plants and mammals. LysM modules recognize polysaccharides containing N-acetylglucosamine (GlcNAc) residues including peptidoglycan, an essential component of the bacterial cell wall.

View Article and Find Full Text PDF

Among other perturbations, high hydrostatic pressure has proven to be a mild yet efficient way to unfold proteins. Combining pressure perturbation with NMR spectroscopy allows for a residue-per-residue description of folding reactions. Accessing the full power of NMR spectroscopy under pressure involves the investigation of conformational sampling using orientational restraints such as residual dipolar couplings (RDCs) under conditions of partial alignment.

View Article and Find Full Text PDF

Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology.

View Article and Find Full Text PDF

The time required to fold proteins usually increases significantly under conditions of high pressure. Taking advantage of this general property of proteins, we combined P-jump experiments with NMR spectroscopy to examine in detail the folding reaction of staphylococcal nuclease (SNase) and of some of its cavity-containing variants. The nearly 100 observables that could be measured simultaneously collectively describe the kinetics of folding as a function of pressure and denaturant concentration with exquisite site-specific resolution.

View Article and Find Full Text PDF

Equilibrium unfolding experiments provide access to protein thermodynamic stability revealing basic aspects of protein structure-function relationships. A limitation of these experiments stands on the availability of large amounts of protein samples. Here we present the use of the NanoDrop for monitoring guanidinium chloride-induced unfolding by Soret absorbance of monomeric heme proteins.

View Article and Find Full Text PDF

The magnitude and sign of the volume change upon protein unfolding are strongly dependent on temperature. This temperature dependence reflects differences in the thermal expansivity of the folded and unfolded states. The factors that determine protein molar expansivities and the large differences in thermal expansivity for proteins of similar molar volume are not well understood.

View Article and Find Full Text PDF

The 2/2 hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002, GlbN, coordinates the heme iron with two histidines and exists either with a b heme or with a covalently attached heme. The binding of exogenous ligands displaces the distal histidine and induces a conformational rearrangement involving the reorganization of internal void volumes.

View Article and Find Full Text PDF

The effects of cavity-creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C-terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale.

View Article and Find Full Text PDF

The folding of staphylococcal nuclease (SNase) is known to proceed via a major intermediate in which the central OB subdomain is folded and the C-terminal helical subdomain is disordered. To identify the structural and energetic determinants of this folding free energy landscape, we have examined in detail, using high-pressure NMR, the consequences of cavity creating mutations in each of the two subdomains of an ultrastable SNase, Δ+PHS. The stabilizing mutations of Δ+PHS enhanced the population of the major folding intermediate.

View Article and Find Full Text PDF

Binding cooperativity guides the formation of protein-nucleic acid complexes, in particular those that are highly regulated such as replication origins and transcription sites. Using the DNA binding domain of the origin binding and transcriptional regulator protein E2 from human papillomavirus type 16 as model, and through isothermal titration calorimetry analysis, we determined a positive, entropy-driven cooperativity upon binding of the protein to its cognate tandem double E2 site. This cooperativity is associated with a change in DNA structure, where the overall B conformation is maintained.

View Article and Find Full Text PDF

Protein recognition of DNA sites is a primary event for gene function. Its ultimate mechanistic understanding requires an integrated structural, dynamic, kinetic, and thermodynamic dissection that is currently limited considering the hundreds of structures of protein-DNA complexes available. We describe a protein-DNA-binding pathway in which an initial, diffuse, transition state ensemble with some nonnative contacts is followed by formation of extensive nonnative interactions that drive the system into a kinetic trap.

View Article and Find Full Text PDF

Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) leads to ionic strength-dependent hetero-oligomerization even at the lowest concentrations measurable. Titration experiments followed by light scattering and native gel electrophoresis show insoluble oligomeric complexes with a >or=2000 nm diameter and intermediate soluble complexes 40 and 115 nm in diameter, respectively, formed in excess of E2C.

View Article and Find Full Text PDF

DNA sequence recognition by the homodimeric C-terminal domain of the human papillomavirus type 16 E2 protein (E2C) is known to involve both direct readout and DNA-dependent indirect readout mechanisms, while protein-dependent indirect readout has been deduced but not directly observed. We have investigated coupling between specific DNA binding and the dynamics of the unusual E2C fold, using pH as an external variable. Nuclear magnetic resonance and isothermal titration calorimetry show that pH titration of His318 in the complex interface and His288 in the core of the domain is coupled to both binding and the dynamics of the beta-barrel core of E2C, with a tradeoff between dimer stability and function.

View Article and Find Full Text PDF

Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome.

View Article and Find Full Text PDF

Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric beta-barrel fold to stability, dimerization, and DNA binding.

View Article and Find Full Text PDF