A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures.
View Article and Find Full Text PDFThis review presents recent advances in the design of cancer models to study tumor cell migration, metastasis, and invasion in three-dimensions (3D). These cancer models are divided into two categories based on the biophysiological processes and structures simulated, namely (i) spheroid invasion models or (ii) vascularization models. Some recent advances to spheroid invasion models include new methods to make them amenable to high-throughput settings.
View Article and Find Full Text PDFProteases are involved in almost every important cellular activity, from embryonic morphogenesis to apoptosis. To study protease activity , hydrogels provide a synthetic mimic of the extracellular matrix (ECM) and have utility as a platform to study activity, such as those related to cell migration, in three-dimensions. While 3-dimensional visualization of protease activity could prove quite useful to elucidate the proteolytic interaction at the interface between cells and their surrounding environment, there has been no versatile tool to visualize local proteolytic activity in real time.
View Article and Find Full Text PDFTwo-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering.
View Article and Find Full Text PDF