During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood.
View Article and Find Full Text PDFTargeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms.
View Article and Find Full Text PDFIn metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins.
View Article and Find Full Text PDFReduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging.
View Article and Find Full Text PDFIn the last decades, the prevalence of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has grown. These age-associated disorders are characterized by the appearance of protein aggregates with fibrillary structure in the brains of these patients. Exactly why normally soluble proteins undergo an aggregation process remains poorly understood.
View Article and Find Full Text PDFLow complexity (LC) prion-like domains are over-represented among RNA-binding proteins (RBPs) and contribute to the dynamic nature of RNA granules. Importantly, several neurodegenerative diseases are characterized by cytoplasmic "solid" aggregates formed by mainly nuclear RBPs harboring LC prion-like domains. Although RBP aggregation in disease has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics.
View Article and Find Full Text PDFAging is the most important risk factor for neurodegenerative diseases associated with pathological protein aggregation such as Alzheimer's disease. Although aging is an important player, it remains unknown which molecular changes are relevant for disease initiation. Recently, it has become apparent that widespread protein aggregation is a common feature of aging.
View Article and Find Full Text PDFBackground: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants.
View Article and Find Full Text PDFLow-complexity "prion-like" domains in key RNA-binding proteins (RBPs) mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics.
View Article and Find Full Text PDFFor all organisms promoting protein homeostasis is a high priority in order to optimize cellular functions and resources. However, there is accumulating evidence that aging leads to a collapse in protein homeostasis and widespread non-disease protein aggregation. This review examines these findings and discusses the potential causes and consequences of this physiological aggregation with age in particular in relation to disease protein aggregation and toxicity.
View Article and Find Full Text PDFAberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in beta-sheets, which promote disease protein aggregation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates.
View Article and Find Full Text PDFThe transcriptomic and proteomic techniques presented in part I (Functional Genomics meets neurodegenerative disorders. Part I: transcriptomic and proteomic technology) of this back-to-back review have been applied to a range of neurodegenerative disorders, including Huntington's disease (HD), Prion diseases (PrD), Creutzfeldt-Jakob disease, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), frontotemporal dementia (FTD) and Parkinson's disease (PD). Samples have been derived either from human brain and cerebrospinal fluid, tissue culture cells or brains and spinal cord of experimental animal models.
View Article and Find Full Text PDFTranscriptomics and proteomics are increasingly applied to gain a mechanistic insight into neurodegenerative disorders. These techniques not only identify distinct, differentially expressed mRNAs and proteins but are also employed to dissect signaling pathways and reveal networks by using an integrated approach. In part I of this back-to-back review, technical aspects are discussed: in the transcriptomics section, which includes enrichment by laser microcapture dissection, we comment on qRT-PCR, SAGE, subtractive hybridization, differential display and microarrays, including software packages.
View Article and Find Full Text PDFTransgenic mice overexpressing the P301L mutant human tau protein exhibit an accumulation of hyperphosphorylated tau and develop neurofibrillary tangles. The consequences of tau pathology were investigated here by proteomics followed by functional analysis. Mainly metabolism-related proteins including mitochondrial respiratory chain complex components, antioxidant enzymes, and synaptic proteins were identified as modified in the proteome pattern of P301L tau mice.
View Article and Find Full Text PDFFilamentous inclusions composed of the microtubule-associated protein tau are a defining characteristic of a large number of neurodegenerative diseases. Here we show that tau degradation in stably transfected and non-transfected SH-SY5Y cells is blocked by the irreversible proteasome inhibitor lactacystin. Further, we find that in vitro, natively unfolded tau can be directly processed by the 20S proteasome without a requirement for ubiquitylation, and that a highly reproducible pattern of degradation intermediates is readily detectable during this process.
View Article and Find Full Text PDF