Publications by authors named "Delilah F G Hendriks"

For almost fifteen years, the availability and regulatory acceptance of new approach methodologies (NAMs) to assess the absorption, distribution, metabolism and excretion (ADME/biokinetics) in chemical risk evaluations are a bottleneck. To enhance the field, a team of 24 experts from science, industry, and regulatory bodies, including new generation toxicologists, met at the Lorentz Centre in Leiden, The Netherlands. A range of possibilities for the use of NAMs for biokinetics in risk evaluations were formulated (for example to define species differences and human variation or to perform quantitative in vitro-in vivo extrapolations).

View Article and Find Full Text PDF

Cytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease affects approximately one billion adults worldwide. Non-alcoholic steatohepatitis (NASH) is a progressive disease and underlies the advancement to liver fibrosis, cirrhosis, and hepatocellular carcinoma, for which there are no FDA-approved drug therapies. We developed a hetero-cellular spheroid system comprised of primary human hepatocytes (PHH) co-cultured with crude fractions of primary human liver non-parenchymal cells (NPC) from several matched or non-matched donors, to identify phenotypes with utility in investigating NASH pathogenesis and drug screening.

View Article and Find Full Text PDF

Drug hepatotoxicity is often delayed in onset. An exemplar case is the chronic nature of fialuridine hepatotoxicity, which resulted in the deaths of several patients in clinical trials as preclinical studies failed to identify this human-specific hepatotoxicity. Conventional preclinical in vitro models are mainly designed to evaluate the risk of acute drug toxicity.

View Article and Find Full Text PDF

Recent research has shown that the maintenance of relevant liver functions ex vivo requires models in which the cells exhibit an in vivo-like phenotype, often achieved by reconstitution of appropriate cellular interactions. Multiple different models have been presented that differ in the cells utilized, media, and culture conditions. Furthermore, several technologically different approaches have been presented including bioreactors, chips, and plate-based systems in fluidic or static media constituting of chemically diverse materials.

View Article and Find Full Text PDF

Recent advances in the development of various culture platforms are promising for achieving more physiologically relevant in vitro hepatic models using primary human hepatocytes (PHHs). Previous studies have shown the value of PHHs three-dimensional (3D) spheroid models, cultured in low cell number (1330-2000 cells/3D spheroid), to study long-term liver function as well as pharmacological drug effects and toxicity. In this study, we report that only plateable PHHs aggregate and form compact 3D spheroids with a success rate of 79%, and 96% reproducibility.

View Article and Find Full Text PDF

Cholestasis represents a major subtype of drug-induced liver injury and novel preclinical models for its prediction are needed. Here we used primary human hepatocytes (PHH) from different donors in 2D-sandwich (2D-sw) and/or 3D-spheroid cultures to study inter-individual differences in the response towards cholestatic hepatotoxins after short-term (48-72 hours) and long-term repeated exposures (14 days). The cholestatic liabilities of drugs were determined by comparing cell viability upon exposure to the highest non-cytotoxic drug concentration in the presence and absence of a non-cytotoxic concentrated bile acid mixture.

View Article and Find Full Text PDF

The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed.

View Article and Find Full Text PDF

Unlabelled: Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo. However, in two-dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more-accurate and relevant long-term in vitro hepatocyte models.

View Article and Find Full Text PDF

Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound's potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days.

View Article and Find Full Text PDF

The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity.

View Article and Find Full Text PDF

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability.

View Article and Find Full Text PDF

Recently two novel enzymes were identified in the outer mitochondrial membrane, mARC1 and mARC2. These molybdenum containing enzymes can reduce a variety of N-hydroxylated compounds, such as N-hydroxy-guanidines and sulfohydroxamic acids, as well as convert nitrite into nitric oxide (NO). However, their endogenous functions remain unknown.

View Article and Find Full Text PDF

quinone oxidoreductase 1 (NQO1) is an enzyme capable of reducing a broad range of chemically reactive quinones and quinoneimines (QIs) and can be strongly upregulated by Nrf2/Keap1-mediated stress responses. Several commonly used drugs implicated in adverse drug reactions (ADRs) are known to form reactive QI metabolites upon bioactivation by P450, such as acetaminophen (APAP), diclofenac (DF), and mefenamic acid (MFA). In the present study, the reductive activity of human NQO1 toward the QI metabolites derived from APAP and hydroxy-metabolites of DF and MFA was studied, using purified bacterial P450 BM3 (CYP102A1) mutant M11 as a bioactivation system.

View Article and Find Full Text PDF