The degradation of biopolymers such as polylactic acid (PLA) has been studied for several years; however, the results regarding the mechanism of degradation are not completely understood yet. PLA is easily processed by traditional techniques including injection molding, blow molding, extrusion, and thermoforming; in this research, the extrusion and injection molding processes were used to produce PLA samples for accelerated destructive testing. The methodology employed consisted of carrying out material testing under the guidelines of several ASTM standards; this research hypothesized that the effects of UV light, humidity, and temperature exposure have a statistical difference in the PLA degradation rate.
View Article and Find Full Text PDFFood associated diseases pose significant public health threat in the United States. Health risks associated with food-borne pathogens drive the need for constant monitoring of food products. An efficient method that can diagnose food-borne pathogens rapidly will be invaluable and in high demand.
View Article and Find Full Text PDFFront Nutr
February 2022
Several parameters, including particle size, solvent, temperature, and extraction method, affect phenolic compounds' extraction yield from a plant matrix. Considering the wide availability of sugarcane bagasse (SCB), this study analyzed the effect of different extraction methods and geographical origins on the yield, quality, and antimicrobial activity of phenolic compounds from SCB extracts. Samples from three geographical locations (Veracruz, Mexico; Santa Rosa, Texas, USA; and St.
View Article and Find Full Text PDFWood plastic composites (WPCs) specimens containing high-density polyethylene (HDPE) and wood pruning waste were manufactured and evaluated for their mechanical properties. Pecan waste was used as an accessible and sustainable source in this study, and the effects of its particle size and concentration on WPC strengths were evaluated. Pecan waste was milled and sieved to various particle sizes, and testing samples were fabricated by mixing them in a twin-screw extruder and injection molding.
View Article and Find Full Text PDFThis study examines the effect of different concentrations of glandless cottonseed meal protein (GCSMP) and maltodextrin (MD) as microencapsulating agents on the shelf life stability of phenolic compounds extracted from sugarcane bagasse (SCB). Sugarcane bagasse showed high antioxidant activity, which remained stable after 30 days of storage at 4°C. The best microencapsulation process was obtained with an MD and GCSMP ratio of 63.
View Article and Find Full Text PDFWhile the degradation of Polylactic Acid (PLA) has been studied for several years, results regarding the mechanism for determining degradation are not completely understood. Through accelerated degradation testing, data can be extrapolated and modeled to test parameters such as temperature, voltage, time, and humidity. Accelerated lifetime testing is used as an alternative to experimentation under normal conditions.
View Article and Find Full Text PDFThis study shows the effects of maltodextrins and gum arabic as microencapsulation agents on the stability of sugarcane bagasse extracts and the potential use of the extracts as antimicrobial agents. The bioactive compounds in sugarcane bagasse (SCB) were extracted using 90% methanol and an orbital shaker at a fixed temperature of 50 °C, thereby obtaining a yield of the total phenolic content of 5.91 mg GAE/g.
View Article and Find Full Text PDFThis investigation aimed to extract and characterize the GCSM proteins, determine their solubility potential at two different temperatures and different solvents, and explore their functional properties. During the extraction, no water- or ethanol-soluble protein was found. Most of the protein was extracted with KOH solution.
View Article and Find Full Text PDFIn this report, highly crystalline and well-dispersed nano-sized nickel metal organic framework (MOFs) was decorated over graphene oxide (GO) and carbon nanotubes (CNTs) platforms to form hybrid nanocomposites. These as-synthesized hybrid nanocomposites were synthesized through a one-pot green solvothermal method. The prepared nanocomposites were characterized by SEM, TEM, EDS, XRD, FT-IR, Raman and TGA techniques.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
The neural mechanisms underlying changes in gene expression in the interconversion between skeletal muscle and the non-contractile electrogenic cells of the electric organ in electric fishes require several days to be manifested. It is extremely challenging to study these non-immediate forms of plasticity in reduced preparations in cell culture due to the time requirements. To address this experimental obstacle we developed a 3D-printed wearable backpack that allows chronic electrical stimulation of aquatic teleost fish.
View Article and Find Full Text PDF