Publications by authors named "Delia J Nelson"

Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit to patients with neuroblastoma however efficacy is likely impaired by the immunosuppressive tumor microenvironment. We have previously defined a link between intratumoral copper levels and immune evasion. Here, we report that adjuvant copper chelation potentiates anti-GD2 antibody therapy to confer durable tumor control in immunocompetent models of neuroblastoma.

View Article and Find Full Text PDF

The importance of the immune microenvironment in triple negative and HER2-amplified breast cancer (BC) is well-established; less is known about the immune environment in luminal breast cancers. We aimed to assess for the impact of immune biomarkers on BC outcome in a group of luminal B patients with archived tissue and annotated clinical information. Patients with early breast cancer (EBC) treated in a single institution over a 14-year period, with prospectively collected data were included.

View Article and Find Full Text PDF

We assessed the murine Stimulator of Interferon Genes (STING) agonist, DMXAA, for anti-mesothelioma potential using the AE17-sOVA model that expresses ovalbumin (OVA) as a neo tumor antigen. Dose response experiments alongside testing different routes of administration identified a safe effective treatment regimen that induced 100% cures in mice with small or large tumors. Three doses of 25mg/kg DMXAA given intra-tumorally every 9 days induced tumor regression and long-term survival (>5 months).

View Article and Find Full Text PDF

Increased cancer incidence occurs with the emergence of immunosenescence, highlighting the indispensability of the immune system in preventing cancer and its dysregulation with aging. Tumor-associated macrophages (TAMs) are often present in high numbers and are associated with poor clinical outcomes in solid cancers, including mesothelioma. Monocytes and macrophages from the bone marrow and spleen can respond to tumor-derived factors, such as CSF-1, and initiation of the CSF-1R signaling cascade results in their proliferation, differentiation, and migration to the tumor.

View Article and Find Full Text PDF

Human and canine sarcomas are difficult to treat soft tissue malignancies with an urgent need for new improved therapeutic options. Local recurrence rates for humans are between 10%-30%, and 30%-40% develop metastases. Outcomes for dogs with sarcoma vary with grade but can be similar.

View Article and Find Full Text PDF

The immune system, and in particular, cytotoxic CD8 T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated "reinvigoration"-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion.

View Article and Find Full Text PDF

The synthesis, structural and photophysical characterisation of four tricarbonyl rhenium(i) complexes bound to 1,10-phenanthroline and a tetrazolato ancillary ligand are reported. The complexes are differentiated by the nature (hydroxy or methoxy) and position (meta or para) of the substituent attached to the phenyl ring in conjugation to the tetrazole ring. The complexes exhibit phosphorescence emission from triplet charge transfer excited states, with the maxima around 600 nm, excited state lifetime decays in the 200-300 ns range, and quantum yield values of 4-6% in degassed acetonitrile solutions.

View Article and Find Full Text PDF

Increasing life expectancy is associated with increased cancer incidence, yet the effect of cancer and anti-cancer treatment on elderly patients and their immune systems is not well understood. Declining T cell function with aging in response to infection and vaccination is well documented, however little is known about aged T cell responses to tumor antigens during cancer progression or how these responses are modulated by standard chemotherapy. We examined T cell responses to cancer in aged mice using AE17sOVA mesothelioma in which ovalbumin (OVA) becomes a 'spy' tumor antigen containing one dominant (SIINFEKL) and two subdominant (KVVRFDKL and NAIVFKGL) epitopes.

View Article and Find Full Text PDF

Aging is associated with an increased incidence of cancer. One contributing factor could be modulation of immune cells responsible for anti-tumor responses, such as dendritic cells (DCs) and T cells. These immunological changes may also impact the efficacy of cancer immunotherapies in the elderly.

View Article and Find Full Text PDF

Most cancers emerge in the elderly, including lung cancer and mesothelioma, yet the elderly remain an underrepresented population in pre-clinical cancer studies and clinical trials. The immune system plays a critical role in the effectiveness of many anti-cancer therapies in young hosts via tumor-specific T cells. However, immunosuppressive macrophages can constitute up to 50% of the tumor burden and impair anti-tumor T cell activity.

View Article and Find Full Text PDF

There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated.

View Article and Find Full Text PDF

The average age of the human population is rising, leading to an increasing burden of age-related diseases, including increased susceptibility to infection. However, immune function can decrease with age which could impact on processes that require a functional immune system. Aging is also characterized by chronic low-grade inflammation which could further impact immune cell function.

View Article and Find Full Text PDF

Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways.

View Article and Find Full Text PDF

Historically, the immune environment was not considered an important target for breast cancer treatment. However, the association of lymphocytic infiltrates in triple negative and HER-2 over-amplified breast cancer subtypes with better outcomes, has provoked interest in evaluating the role of the immune system in the luminal B subtype that accounts for 39% of breast cancers and has a poor patient prognosis. It is unknown which immunosuppressive cell types or molecules (e.

View Article and Find Full Text PDF

Impaired immune function has been implicated in the declining health and higher incidence of cancer in the elderly. However, age-related changes to immunity are not completely understood. Neutrophils and macrophages represent the first line of defence yet their ability to phagocytose pathogens decrease with aging.

View Article and Find Full Text PDF

We used a murine model to monitor changes to myeloid cell subsets, i.e., myeloid-derived suppressor cells (MDSCs), M1 macrophages that secrete pro-inflammatory cytokines and express CD40 and CD80 and suppressive M2 macrophages that secrete anti-inflammatory cytokines and express CD206 and CX3CR1, during mesothelioma progression and during chemotherapy or immunotherapy-induced tumor regression.

View Article and Find Full Text PDF

Mesothelioma is an almost invariably fatal tumor with chemotherapy extending survival by a few months. One immunotherapeutic strategy is to target dendritic cells (DCs), key antigen-presenting cells involved in antigen presentation, to induce antigen-specific T cell responses. However, DC-targeting will only be effective if DCs are fit-for-purpose, and the functional status of DCs in mesothelioma patients was not clear.

View Article and Find Full Text PDF

Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function.

View Article and Find Full Text PDF

Background: Aging is associated with a decline in lymphocyte function however, little is known about dendritic cell (DC) subsets and aging. Aging is also associated with increasing circulating lipid levels and intracellular lipid accumulation modulates DC function. Whether age-associated increases in lipid levels influence DC biology is unknown.

View Article and Find Full Text PDF

Most cancers emerge in elderly and immune-comprised hosts implying an important role for cancer immune surveillance. Here, we focus on the role of tissue-associated innate immune cells including antigen presenting cells (i.e.

View Article and Find Full Text PDF

Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood.

View Article and Find Full Text PDF

Changes to innate cells, such as macrophages and myeloid-derived suppressor cells (MDSCs), during aging in healthy or tumor-bearing hosts are not well understood. We compared macrophage subpopulations and MDSCs from healthy young (6-8 weeks) C57BL/6J mice to those from healthy geriatric (24-28 months) mice. Spleens, lymph nodes, and bone marrow of geriatric hosts contained significantly more M2 macrophages and MDSCs than their younger counterparts.

View Article and Find Full Text PDF

We aimed to determine if the tumor microenvironment could be turned into a "self"-vaccine site. We show that provoking a local inflammatory response modulates endothelia to permit the infiltration of innate and adaptive effector cells which collaborate to eradicate the inflamed tumor and other tumor deposits, and provide long-term protection.

View Article and Find Full Text PDF

Agonistic anti-CD40 antibody is a potent stimulator of anti-tumor immune responses due to its action on both immune and tumor cells. It has the ability to "precondition" dendritic cells, allowing them to prime effective cytotoxic T-cell responses. Thus, anti-CD40 antibody provides an ideal therapy for combination with traditional cancer treatments (i.

View Article and Find Full Text PDF

Cytotoxic chemotherapies may expose the immune system to high levels of tumor antigens and expand the CD8(+) T-cell response to include weak or subdominant antigens. Here, we evaluated the in vivo CTL response to tumor antigens using a murine mesothelioma tumor cell line transfected with a neotumor antigen, ovalbumin, that contains a known hierarchy of epitopes for MHC class I molecules. We show that as tumors progress, effector CTLs are generated in vivo that focus on the dominant epitope SIINFEKL, although a weak response was seen to one (KVVRFDKL) subdominant epitope.

View Article and Find Full Text PDF