Publications by authors named "Delia I Pinon"

Understanding of the structural importance of each position along a peptide ligand can provide important insights into the molecular basis for its receptor binding and biological activity. This has typically been evaluated using serial replacement of each natural residue with an alanine. In the current report, we have further complemented alanine scanning data with the serial replacement of each residue within secretin-27, the natural ligand for the prototypic class B G protein-coupled secretin receptor, using a photolabile phenolic residue.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) is a family B G protein-coupled receptor and an important drug target for the treatment of type II diabetes, with activation of pancreatic GLP-1Rs eliciting glucose-dependent insulin secretion. Currently, approved therapeutics acting at this receptor are peptide based, and there is substantial interest in small molecule modulators for the GLP-1R. Using a variety of resonance energy transfer techniques, we demonstrate that the GLP-1R forms homodimers and that transmembrane helix 4 (TM4) provides the primary dimerization interface.

View Article and Find Full Text PDF

While it is evident that the carboxyl-terminal region of natural peptide ligands bind to the amino-terminal domain of class B GPCRs, how their biologically critical amino-terminal regions dock to the receptor is unclear. We utilize cysteine trapping to systematically explore spatial approximations among residues in the first five positions of secretin and in every position within the receptor extracellular loops (ECLs). Only Cys(2) and Cys(5) secretin analogues exhibited full activity and retained moderate binding affinity (IC(50): 92±4 and 83±1 nM, respectively).

View Article and Find Full Text PDF

The development of small molecule agonists for class B G protein-coupled receptors (GPCRs) has been quite challenging. With proof-of-concept that exenatide, the parenterally administered peptide agonist of the glucagon-like peptide-1 (GLP1) receptor, is an effective treatment for patients with diabetes mellitus, the development of small molecule agonists could have substantial advantages. We previously reported a lead for small molecule GLP1 receptor agonist development representing the pentapeptide NRTFD.

View Article and Find Full Text PDF

The natural ligands for family B G protein-coupled receptors are moderate-length linear peptides having diffuse pharmacophores. The amino-terminal regions of these ligands are critical for biological activity, with their amino-terminal truncation leading to production of orthosteric antagonists. The carboxyl-terminal regions of these peptides are thought to occupy a ligand-binding cleft within the disulfide-bonded amino-terminal domains of these receptors, with the peptides in amphipathic helical conformations.

View Article and Find Full Text PDF

The molecular basis of ligand binding and activation of family B G protein-coupled receptors is not yet clear due to the lack of insight into the structure of intact receptors. Although NMR and crystal structures of amino-terminal domains of several family members support consistency in general structural motifs that include a peptide-binding cleft, there are variations in the details of docking of the carboxyl terminus of peptide ligands within this cleft, and there is no information about siting of the amino terminus of these peptides. There are also no empirical data to orient the receptor amino terminus relative to the core helical bundle domain.

View Article and Find Full Text PDF

The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear.

View Article and Find Full Text PDF

Secretin is a linear 27-residue peptide hormone that stimulates pancreatic and biliary ductular bicarbonate and water secretion by acting at its family B G protein-coupled receptor. While, like other family members, the carboxyl-terminal region of secretin is most important for high affinity binding and its amino-terminal region is most important for receptor selectivity and receptor activation, determinants for these activities are distributed throughout the entire length of this peptide. In this work, we have systematically investigated changing each residue within secretin to alanine and evaluating the impact on receptor binding and biological activity.

View Article and Find Full Text PDF

Family B G protein-coupled receptors include several potentially important drug targets, yet our understanding of the molecular basis of ligand binding to and activation of these receptors is incomplete. While NMR and crystal structures exist for peptide ligand-associated amino-terminal domains of several family members, these only provide insights into the conformation of the carboxyl-terminal region of the peptides. The amino-terminal region of these peptides, critical for biological activity, is believed to interact with the helical bundle domain, and is, therefore, unconstrained in these structures.

View Article and Find Full Text PDF

Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation.

View Article and Find Full Text PDF

There is a compelling need for the development of small molecule agonists acting at family B G protein-coupled receptors. A possible lead for the development of such drugs was reported when it was recognized that sequences endogenous to the amino terminus of the secretin receptor and certain other receptors in this family possess weak full agonist activity (Dong et al. Mol Pharmacol 2006;70:206-213).

View Article and Find Full Text PDF

The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model.

View Article and Find Full Text PDF

The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked.

View Article and Find Full Text PDF

G protein-coupled receptors represent the largest family of receptors and the major target of current drug development efforts. Understanding of the mechanisms of ligand binding and activation of these receptors remains limited, despite recent advances in structural determination of family members. This work focuses on the use of photoaffinity labeling and molecular modeling to elucidate the structural basis of binding a natural peptide ligand to a family A G protein-coupled receptor, the type 1 cholecystokinin receptor.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer (FRET) represents a powerful tool to establish relative distances between donor and acceptor fluorophores. By utilizing several donors situated in distinct positions within a docked full agonist ligand and several acceptors distributed at distinct sites within its receptor, multiple interdependent dimensions can be determined. These can provide a unique method to establish or confirm three-dimensional structure of the molecular complex.

View Article and Find Full Text PDF

The amino terminus of class II G protein-coupled receptors plays an important role in ligand binding and receptor activation. Understanding of the conformation of the amino-terminal domain of these receptors has been substantially advanced with the solution of nuclear magnetic resonance and crystal structures of this region of receptors for corticotrophin-releasing factor, pituitary adenylate cyclase-activating polypeptide, and gastric inhibitory polypeptide. However, the orientation of the amino terminus relative to the receptor core and how the receptor gets activated upon ligand binding remain unclear.

View Article and Find Full Text PDF

Current understanding of the molecular basis of activation of class II G protein-coupled receptors remains limited, despite recent solution of NMR and crystal structures of amino-terminal domains of several family members. One mechanism proposed for the activation of these receptors involves an agonist-stimulated change in conformation of the receptor amino terminus. This results in the exposure of a "hidden endogenous agonist" (WDN sequence in secretin and VPAC1 receptors) within the receptor amino terminus that interacts with the receptor core, thereby changing its conformation and exposing its G protein-binding region.

View Article and Find Full Text PDF

Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members.

View Article and Find Full Text PDF

Oligomerization of the Class II G protein-coupled secretin receptor has been reported, but the molecular basis for this and its functional significance have not been determined. In the current work, we have examined the possible contribution of each of the transmembrane (TM) segments of this receptor to its homo-oligomerization, using the method of competitive disruption screening for inhibition of receptor bioluminescence resonance energy transfer signal. TM IV was the only segment that was found to disrupt receptor bioluminescence resonance energy transfer.

View Article and Find Full Text PDF

The structurally unique amino-terminal domain of class II G protein-coupled receptors is critically important for ligand binding and receptor activation. Understanding the precise role it plays requires detailed insights into the molecular basis of its ligand interactions and the conformation of the ligand-receptor complex. In this work, we used two high-affinity, full-agonist, secretin-like photolabile probes having sites for covalent attachment in positions 21 and 23 and used sequential proteolysis and sequencing of the labeled region of the receptor to identify two new spatial approximation constraints.

View Article and Find Full Text PDF

Oligomerization of the G protein-coupled cholecystokinin (CCK) receptor has been demonstrated, but its molecular basis and functional importance are not clear. We now examine contributions of transmembrane (TM) segments to oligomerization of this receptor using a peptide competitive inhibition strategy. Oligomerization of CCK receptors tagged at the carboxyl terminus with Renilla luciferase or yellow fluorescent protein was quantified using bioluminescence resonance energy transfer (BRET).

View Article and Find Full Text PDF

Ligand probes with fluorescent indicators positioned throughout the pharmacophoric domain can provide important insights into the molecular basis of receptor binding and activation as reflected in the microenvironment of each indicator while docked at a receptor. We developed three cholecystokinin-like probes with Aladan situated at the N terminus, in the mid-region, and at the C terminus (positions 24, 29, and 33, respectively). These were studied in solution and docked at type A and B cholecystokinin receptors.

View Article and Find Full Text PDF

Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists.

View Article and Find Full Text PDF

The class B family of G protein-coupled receptors contains several potentially important drug targets, yet our understanding of the molecular basis of ligand binding and receptor activation remains incomplete. Although a key role is recognized for the cysteine-rich, disulfide-bonded amino-terminal domain of these receptors, detailed insights into ligand docking and resultant conformational changes are not clear. We postulate that binding natural ligands to this domain results in a conformational change that exposes an endogenous ligand which interacts with the body of the receptor to activate it.

View Article and Find Full Text PDF

Understanding of the conformational changes in G protein-coupled receptors associated with activation and inactivation is of great interest. We previously used photoaffinity labeling to elucidate spatial approximations between photolabile residues situated throughout the pharmacophore of secretin agonist probes and this receptor. The aim of the current work was to develop analogous photolabile secretin antagonist probes and to explore their spatial approximations.

View Article and Find Full Text PDF