The role of neurotrophin-4/5 (NT-4/5) in the enhancement of axon regeneration in peripheral nerves produced by treadmill training was studied in mice. Common fibular nerves of animals of the H strain of thy-1-YFP mice, in which a subset of axons in peripheral nerves is marked by the presence of yellow fluorescent protein, were cut and surgically repaired using nerve grafts from non-fluorescent mice. Lengths of profiles of fluorescent regenerating axons were measured using optical sections made through whole mounts of harvested nerves.
View Article and Find Full Text PDFThe sodium-bicarbonate cotransporter NBCn1 (SLC4A7) is an acid-base transporter that normally moves Na(+) and HCO(3)(-) into the cell. This membrane protein is sensitive to cellular and systemic pH changes. We examined NBCn1 expression and localization in the brain and its response to chronic metabolic acidosis.
View Article and Find Full Text PDFWe investigated the extent of misdirection of regenerating axons when that regeneration was enhanced by using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves 2 or 4 weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving 2 weeks of treadmill training, according to either a continuous protocol (10 m/minute, 1 hour/day, 5 days/week) or an interval protocol (20 m/minute for 2 minutes, followed by a 5-minute rest, repeated four times, 5 days/week).
View Article and Find Full Text PDF