Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such parameters on cellular response is paramount to adaptively optimize nsPEF treatment. Herein, we examined the effects of nsPEF ≤ 10 ns on long-term cellular viability and growth as a function of pulse duration (2-10 ns), PRR (20 and 200 Hz), cumulative time duration (1-5 µs), and absorbed electrical energy density (up to 81 mJ/mm in sucrose-containing low-conductivity buffer and up to 700 mJ/mm in high-conductivity HBSS buffer).
View Article and Find Full Text PDFIntroduction: The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.
View Article and Find Full Text PDFThe potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g.
View Article and Find Full Text PDFPrevious studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.
View Article and Find Full Text PDFThis study aims to analyze in real-time the potential modifications induced by low-level continuous-wave and Global System for Mobile Communications radiofrequency (RF) exposure at 1.8 GHz on brain activation in anesthetized mice. A specific in vivo experimental setup consisting of a dipole antenna for the local exposure of the brain was fully characterized.
View Article and Find Full Text PDFIncreased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide.
View Article and Find Full Text PDFInt J Mol Sci
January 2022
It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW).
View Article and Find Full Text PDFThree-dimensional (3D) cellular models represent more realistically the complexity of in vivo tumors compared to 2D cultures. While 3D models were largely used in classical electroporation, the effects of nanosecond pulsed electric field (nsPEF) have been poorly investigated. In this study, we evaluated the biological effects induced by nsPEF on spheroid tumor model derived from the HCT-116 human colorectal carcinoma cell line.
View Article and Find Full Text PDFAs of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals.
View Article and Find Full Text PDFRecent studies proved that classical bio-effects induced by nanosecond pulsed electric field (nsPEF) can be reduced by the delivery of a negative polarity pulse generated immediately after a positive polarity pulse. This phenomenon is known as "bipolar cancellation" and it was reported for a wide range of bipolar pulses with pulse duration from 2 ns to 900 ns. On the contrary, paired pulses, i.
View Article and Find Full Text PDFRemodeling of nanoscopic structures is not just crucial for cell biology, but it is also at the core of bioinspired materials. While the microtubule cytoskeleton in cells undergoes fast adaptation, adaptive materials still face this remodeling challenge. Moreover, the guided reorganization of the microtubule network and the correction of its abnormalities is still a major aim.
View Article and Find Full Text PDFMobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1 rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFThe present study was conducted to re-evaluate the effect of low-level 1800 MHz RF signals on RAS/MAPK activation in live cells. Using Bioluminescence Resonance Energy Transfer technique (BRET), we assessed the effect of Continuous wave (CW) and Global System for Mobile (GSM)-modulated 1800 MHz signals (up to 2 W/kg) on ERK and RAS kinases' activity in live HuH7 cells. We found that radiofrequency field (RF) exposure for 24 h altered neither basal level of RAS and ERK activation nor the potency of phorbol-12-myristate-13-acetate (PMA) to activate RAS and ERK kinases.
View Article and Find Full Text PDFThe Pasche research group has reported that tumor-specific electromagnetic field frequencies have physiological and potential anti-tumor effects in cells, animals, and humans. Our aim was to investigate whether these fields have similar effects on physiological parameters in murine tumor models. Human HuH7 or HEPG2 cells were implanted in the right flank of 8-week-old female RAG gamma 2 C immunodeficient mice.
View Article and Find Full Text PDFIn electroporation-based medical treatments, excitable tissues are treated, either intentionally (irreversible electroporation of brain cancer, gene electrotransfer or ablation of the heart muscle, gene electrotransfer of skeletal muscles), or unintentionally (excitable tissues near the target area). We investigated how excitable and non-excitable cells respond to electric pulses, and if electroporation could be an effective treatment of the tumours of the central nervous system. For three non-excitable and one excitable cell line, we determined a strength-duration curve for a single pulse of 10ns-10ms.
View Article and Find Full Text PDFThe existence of effects of radiofrequency field exposure at environmental levels on living tissues and organisms remains controversial, in particular regarding potential "nonthermal" effects produced in the absence of temperature elevation. Therefore, we investigated whether TRPV1, one of the most studied thermosensitive channels, can be activated by the heat produced by radiofrequency fields and by some specific nonthermal interaction with the fields. We have recently shown that TRPV1 activation can be assessed in real-time on live cells using the bioluminescence resonance energy transfer technique.
View Article and Find Full Text PDFCytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators.
View Article and Find Full Text PDFNanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane.
View Article and Find Full Text PDFIn this paper, delivery devices for nanosecond pulsed electric field exposure of biological samples in direct contact with electrodes or isolated are presented and characterized. They are based on a modified electroporation cuvette and two transverse electromagnetic cells (TEM cells). The devices were used to apply pulses with high intensity (4.
View Article and Find Full Text PDFHigh powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF.
View Article and Find Full Text PDFIn this paper, the dosimetric characterization of an EMF exposure setup compatible with real-time impedance measurements of adherent biological cells is proposed. The EMF are directly delivered to the 16-well format plate used by the commercial xCELLigence apparatus. Experiments and numerical simulations were carried out for the dosimetric analysis.
View Article and Find Full Text PDFDespite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs.
View Article and Find Full Text PDFCell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR).
View Article and Find Full Text PDF