Publications by authors named "Delgado M Valdez"

Combining cryopreservation of germline stem cells (GSCs) with their subsequent transplantation into recipient fish is a powerful tool for long-term preservation of genetic resources of endangered fishes. However, application of this technique has been limited because endangered species sometimes have small gonads and do not supply enough GSCs to be used for transplantation. This limitation could be overcome by expanding GSCs in vitro, though this has been difficult due to the complexity of reconstructing the gonadal microenvironment that surrounds GSCs.

View Article and Find Full Text PDF

Fish oocytes have not been cryopreserved successfully, probably because it is difficult to prevent intracellular ice from forming. Previously, we have shown in medaka that immature oocytes are more suitable for cryopreservation than mature oocytes or embryos, in terms of permeability. We have also shown in immature medaka oocytes that the exogenous expression of aquaporin 3 (AQP3), a water/cryoprotectant channel, promotes the movement of water and cryoprotectants through the plasma membrane.

View Article and Find Full Text PDF

Interferon-γ (IFN-γ) engenders strong antiproliferative responses, in part through activation of p53. However, the long-known IFN-γ-dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly(ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells.

View Article and Find Full Text PDF

Background: Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level.

View Article and Find Full Text PDF

As a step to develop a cryopreservation method for zebrafish oocytes, we investigated the cryobiological properties of immature oocytes at stage III by examining their ability to mature and to develop into hatching embryos after fertilization. When oocytes were chilled at -5°C for 30min, the maturation rate decreased, but the rates of fertilization and hatching were not significantly different from those of controls. When oocytes were exposed to hypotonic solutions for 60min at 25°C, the rates of maturation, fertilization, and hatching decreased in a solution with 0.

View Article and Find Full Text PDF

To improve the cryopreservation protocol for mouse sperm, we attempted to estimate the type and extent of cryoinjury at various steps of the process. First, we demonstrated that mouse sperm are sensitive to chilling at -15 C and that the sensitivity is dependent on the length of exposure. To estimate cryoinjuries, sperm suspensions were ice-seeded at -5 or -15 C, frozen with liquid nitrogen (LN(2)) gas and then frozen in LN(2).

View Article and Find Full Text PDF

In vitrified solutions, ice can form during warming if the concentration of the cryoprotectant is insufficient. For the cryopreservation of cells, ice is innocuous when it remains outside the cell, but intracellular ice (ICI) is lethal. We tried to estimate the conditions in which ICI forms in vitrified mouse morulae during warming.

View Article and Find Full Text PDF

In zebrafish oocytes, it has been reported that a 60 or 75% Leibovitz L-15 medium or simple balanced saline solution containing 17alpha, 20beta-dihydroxy-4-pregnen-3-one (DHP) is effective for nuclear maturation. However, most of the oocytes that matured under these conditions were not fertilized and did not hatch. Thus, these in vitro maturation methods could not support the cytoplasmic maturation of zebrafish oocytes.

View Article and Find Full Text PDF

The permeability to water and cryoprotectants of the plasma membrane is crucial to the successful cryopreservation of embryos. Previously, we have shown in mouse morulae that water and glycerol move across the plasma membrane by facilitated diffusion, and we have suggested that aquaporin 3 plays an important role in their movement. In the present study, we clarify the contribution of aquaporin 3 to the movement of water and various cryoprotectants in mouse morulae by measuring the Arrhenius activation energies for permeability to cryoprotectants and water, through artificial expression of aquaporin 3 using Aqp3 cRNA in mouse oocytes, and by suppressing the expression of aquaporin 3 in morulae by injecting double-stranded RNA of Aqp3 at the one-cell zygote stage.

View Article and Find Full Text PDF

Movement of water and cryoprotectants through the plasma membrane needs to be accelerated for successful cryopreservation of zebrafish oocytes/embryos, which are much larger than their mammalian counterparts. Aquaporin-3 is a water/solute channel that can transport not only water but also various cryoprotectants. In this study, we attempted to increase the permeability of immature zebrafish oocytes at stage III to water and cryoprotectants by exogenous expression of rat aquaporin-3.

View Article and Find Full Text PDF

To identify a stage feasible for the cryopreservation of zebrafish oocytes, we investigated the permeability to water and cryoprotectants of immature (stage III) and mature (stage V) oocytes. The permeability to water (microm/min/atm) of immature oocytes at 25 degrees C (0.37) was significantly higher than that of mature oocytes (0.

View Article and Find Full Text PDF

It has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos.

View Article and Find Full Text PDF

The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes and embryos. Several efforts have been made to facilitate the movement of water and cryoprotectants across the plasma membrane of fish oocytes/embryos because of their large size. Aquaporin-3 is a water/solute channel that can also transport various cryoprotectants.

View Article and Find Full Text PDF

The first successful cryopreservation of fish embryos was reported in the Japanese flounder by vitrification [Chen and Tian, Theriogenology, 63, 1207-1219, 2005]. Since very high concentrations of cryoprotectants are needed for vitrification and fish embryos have a large volume, Japanese flounder embryos must have low sensitivity to cryoprotectant toxicity and high permeability to water and cryoprotectants. So, we investigated the sensitivity and the permeability of Japanese flounder embryos.

View Article and Find Full Text PDF

The cryosensitivity of mammalian embryos depends on the stage of development. Because permeability to water and cryoprotectants plays an important role in cryopreservation, it is plausible that the permeability is involved in the difference in the tolerance to cryopreservation among embryos at different developmental stages. In this study, we examined the permeability to water and glycerol of mouse oocytes and embryos, and tried to deduce the pathway for the movement of water and glycerol.

View Article and Find Full Text PDF

As an essential step toward cryopreservation of fish embryos, we examined the chilling sensitivity of medaka (Oryzias latipes) embryos at various developmental stages. Embryos at the 2-4 cell, 8-16 cell, morula, blastula, and early gastrula stages were suspended in Hanks solution. They were chilled to various temperatures (usually 0 degrees C), kept for various periods (usually 20 min), then cultured for up to 14 d to determine survival (assessed by the ability to hatch).

View Article and Find Full Text PDF

To assess the permeability of mouse oocytes and embryos, matured oocytes and embryos at various stages of development were placed in five cryoprotectant solutions at 25 C for 25 min. From the cross-sectional areas of the oocytes/embryos, the relative change in volume was analyzed. In oocytes, shrinkage was least extensive and recovery was quickest in the propylene glycol solution, showing that propylene glycol permeates the oocytes most rapidly.

View Article and Find Full Text PDF

The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes.

View Article and Find Full Text PDF