Background: Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood.
View Article and Find Full Text PDFPopulation genetic methods are widely used to retrace the introduction routes of invasive species. The unsupervised Bayesian clustering algorithm implemented in STRUCTURE is amongst the most frequently used of these methods, but its ability to provide reliable information about introduction routes has never been assessed. We simulated microsatellite datasets to evaluate the extent to which the results provided by STRUCTURE were misleading for the inference of introduction routes.
View Article and Find Full Text PDFVenom composition of parasitoid wasps attracts increasing interest - notably molecules ensuring parasitism success on arthropod pests - but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range.
View Article and Find Full Text PDFLBPs (lipopolysaccharide binding proteins) and BPIs (bactericidal permeability increasing proteins) are important proteins involved in defense against bacterial pathogens. We recently discovered a novel biocidal activity of a LBP/BPI from the gastropod Biomphalaria glabrata and demonstrated its role in parental immune protection of eggs, highlighting the importance of LBP/BPIs in invertebrate immunity. Here we characterize four additional LBP/BPI from B.
View Article and Find Full Text PDFBackground: The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects.
View Article and Find Full Text PDFBackground: Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops and plants from natural ecosystems. Despite their tremendous economic and ecologic importance, few effective methods exist for limiting the damage caused by these species.
View Article and Find Full Text PDFBackground: Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum.
View Article and Find Full Text PDFThe plant pathogen Phytophthora parasitica forms a biofilm on the host surface. The biofilm transcriptome is characterized by the expression of PPMUCL1/2/3 (PHYTOPHTHORA PARASITICA MUCIN-LIKE) genes, which we report here to be members of a new, large mucin-like gene family restricted to the oomycete lineage. These genes encode secreted proteins organized into two domains.
View Article and Find Full Text PDFThe principal architects of coral reefs are the scleractinian corals; these species are divided in two major clades referred to as "robust" and "complex" corals. Although the molecular diversity of the "complex" clade has received considerable attention, with several expressed sequence tag (EST) libraries and a complete genome sequence having been constructed, the "robust" corals have received far less attention, despite the fact that robust corals have been prominent focal points for ecological and physiological studies. Filling this gap affords important opportunities to extend these studies and to improve our understanding of the differences between the two major clades.
View Article and Find Full Text PDFThe arms race between immune suppressive parasites that produce virulence factors and hosts that evolve resistance to these factors is suggested to be a key driver for the diversification of both partners. However, little is known regarding the diversity of virulence factors in closely related parasites or the mechanisms underlying the variation of virulence. One of the best-described model to address this issue is the interaction between Leptopilina parasitic wasps and their Drosophila hosts, in which variation of virulence is well documented.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors synthesized in the oesophageal glands and injected into the plant tissue through the syringe-like stylet certainly play a central role in these processes. In a search for nematode effectors, we used comparative genomics on expressed sequence tag (EST) datasets to identify Meloidogyne incognita genes encoding proteins potentially secreted upon the early steps of infection.
View Article and Find Full Text PDFWe report here for the first time the isolation and characterization of a protein from the organic matrix (OM) of the sclerites of the alcyonarian, Corallium rubrum. This protein named scleritin is one of the predominant proteins extracted from the EDTA-soluble fraction of the OM. The entire open reading frame (ORF) was obtained by comparing amino acid sequences from de novo mass spectrometry and Edman degradation with an expressed sequence tag library dataset of C.
View Article and Find Full Text PDFOur present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species.
View Article and Find Full Text PDFRoot-knot nematodes, Meloidogyne spp., are sedentary biotrophic parasites which are able to infest > 2000 plant species. After root invasion they settle sedentarily inside the vascular cylinder and maintain a compatible interaction for up to 8 weeks.
View Article and Find Full Text PDFBackground: Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms.
View Article and Find Full Text PDFProteases perform essential physiological functions in all living organisms. In parasitic helminths, they are of particular importance for tissue penetration, digestion of host tissues for nutrition, and evasion of host immune responses. The recent availability of the genome sequence of the nematode Meloidogyne incognita has allowed the analysis of the protease repertoire of this major crop pathogen.
View Article and Find Full Text PDFData on plant pathogenic oomycetes are scarce and little is known about the early events leading to the onset of infection. The aim of this work was to analyze the penetration process of the soil-borne plant pathogen Phytophthora parasitica, which has a wide host range. Here, we performed a cytological analysis of the colonization of the first plant cell and developed an inoculation assay for characterizing the entire penetration process through cellular and molecular analyses.
View Article and Find Full Text PDFBackground: Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges.
View Article and Find Full Text PDFPlant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments.
View Article and Find Full Text PDFRoot-knot nematodes of the genus Meloidogyne are obligate biotrophic parasites able to infest > 2000 plant species. The nematode effectors responsible for disease development are involved in the adaptation of the parasite to its host environment and host response modulation. Here, the differences between the transcriptomes of preparasitic exophytic second-stage juveniles (J2) and parasitic endophytic third-stage juveniles (J3) of Meloidogyne incognita were investigated.
View Article and Find Full Text PDFBackground: Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens.
View Article and Find Full Text PDFData management has emerged as one of the central issues in the high-throughput processes of taking a protein target sequence through to a protein sample. To simplify this task, and following extensive consultation with the international structural genomics community, we describe here a model of the data related to protein production. The model is suitable for both large and small facilities for use in tracking samples, experiments, and results through the many procedures involved.
View Article and Find Full Text PDFGlycosyltransferases are a ubiquitous group of enzymes that catalyse the transfer of a sugar moiety from an activated sugar donor onto saccharide or non-saccharide acceptors. Although many glycosyltransferases catalyse chemically similar reactions, presumably through transition states with substantial oxocarbenium ion character, they display remarkable diversity in their donor, acceptor and product specificity and thereby generate a potentially infinite number of glycoconjugates, oligo- and polysaccharides. We have performed a comprehensive survey of glycosyltransferase-related sequences (over 7200 to date) and present here a classification of these enzymes akin to that proposed previously for glycoside hydrolases, into a hierarchical system of families, clans, and folds.
View Article and Find Full Text PDFWe searched 55 completely sequenced bacterial genomes for glycogen synthesis and degradation enzymes. A significant proportion of these bacteria appears to lack glycogen metabolism capability. Interestingly, these bacteria are parasitic, symbiotic or fastidious (i.
View Article and Find Full Text PDFMicrospores of three genotypes of Asparagus officinalis L. were mechanically isolated without affecting their viability and were submitted to electric fields in order to modulate their competence for embryogenesis. When a constant pulse length and various field strengths (250, 500, 750, 1000, 1500, and 2000 V/cm) were tested, the viability of electro-treated microspores decreased as the field strength increased, for all genotypes.
View Article and Find Full Text PDF