Objective: We aimed to study the antimicrobial and pro-healing potential of equine mesenchymal stromal cell secreted products (i.e. secretome), collected as conditioned media (mesenchymal stromal cell-conditioned media, MSC CM), in a novel in vivo model of methicillin-resistant Staphylococcus aureus (MRSA)-inoculated equine thorax wounds.
View Article and Find Full Text PDFArticular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins.
View Article and Find Full Text PDFIn various biological systems, analyzing how cell behaviors are coordinated over time would enable a deeper understanding of tissue-scale response to physiologic or superphysiologic stimuli. Such data is necessary for establishing both normal tissue function and the sequence of events after injury that lead to chronic disease. However, collecting and analyzing these large datasets presents a challenge-such systems are time-consuming to process, and the overwhelming scale of data makes it difficult to parse overall behaviors.
View Article and Find Full Text PDFBackground: The phenomenon of intercellular mitochondrial transfer from mesenchymal stromal cells (MSCs) has shown promise for improving tissue healing after injury and has potential for treating degenerative diseases like osteoarthritis (OA). Recently MSC to chondrocyte mitochondrial transfer has been documented, but the mechanism of transfer is unknown. Full-length connexin43 (Cx43, encoded by ) and the truncated internally translated isoform GJA1-20k have been implicated in mitochondrial transfer between highly oxidative cells, but have not been explored in orthopaedic tissues.
View Article and Find Full Text PDFAn easy and environment-friendly route for antibacterial coating suited for mobile phone glass protectors was successfully demonstrated. In this route, freshly prepared chitosan solution in 1% v/v acetic acid was added with 0.1 M silver nitrate solution and 0.
View Article and Find Full Text PDFObjective: To evaluate mitochondrial DNA (mtDNA) release from injured chondrocytes and investigate the utility of synovial fluid mtDNA concentration in early detection of posttraumatic osteoarthritis.
Method: We measured mtDNA release using four models of osteoarthritis: in vitro interleukin-1β stimulation of cultured equine chondrocytes, ex vivo mechanical impact of bovine cartilage explants, in vivo mechanical impact of equine articular cartilage, and naturally occurring equine intraarticular fracture. In our in vivo model, one group was treated with an intraarticular injection of the mitoprotective peptide SS-31 following cartilage injury.
Articular cartilage has limited healing capacity and no drugs are available that can prevent or slow the development of osteoarthritis (OA) after joint injury. Mesenchymal stromal cell (MSC)-based regenerative therapies for OA are increasingly common, but questions regarding their mechanisms of action remain. Our group recently reported that although cartilage is avascular and relatively metabolically quiescent, injury induces chondrocyte mitochondrial dysfunction, driving cartilage degradation and OA.
View Article and Find Full Text PDFCellular response to stimulation governs tissue scale processes ranging from growth and development to maintaining tissue health and initiating disease. To determine how cells coordinate their response to such stimuli, it is necessary to simultaneously track and measure the spatiotemporal distribution of their behaviors throughout the tissue. Here, we report on a novel SpatioTemporal Response Analysis IN Situ (STRAINS) tool that uses fluorescent micrographs, cell tracking, and machine learning to measure such behavioral distributions.
View Article and Find Full Text PDFCartilage and other skeletal soft tissues heal poorly after injury, in part due to their lack of vascularity and low metabolic rate. No pharmacologic approaches have proven effective in preventing chronic degenerative disease after joint injury. Mesenchymal stromal cells (MSCs) have been investigated for their ability to treat pain associated with osteoarthritis (OA) and preserve articular cartilage.
View Article and Find Full Text PDFUrinary surgery in the horse may be challenging. More straightforward procedures, such as urinary bladder or urachal defects, do not usually require specialized equipment or imaging, although laboratory work is helpful. Congenital or acquired conditions of the ureters or kidneys may necessitate advanced diagnostic work-ups including advanced imaging /or and minimally invasive procedures.
View Article and Find Full Text PDFBackground: Birth tissue products from amnion, chorion, umbilical cord, amniotic fluid, or cord blood are frequently marketed as viable sources of stem cells and growth factors. It can be difficult for health care professionals to differentiate implied from explicit conclusions in reported product analyses.
Purpose: To provide an educational platform for health care professionals to interpret data presented in the promotion of birth tissue products.
Objective: Amnion products are used in various musculoskeletal surgeries and as injections for joint pain with conflicting reports of cell viability and protein contents. The objective of this study was to determine the full proteome and examine cell viability in 9 commercial amnion products using an unbiased bottom-up shotgun proteomics approach and confocal microscopy.
Design: Products were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and searched against a UniProt database.
Posttraumatic osteoarthritis (PTOA) is typically initiated by momentary supraphysiologic shear and compressive forces delivered to articular cartilage during acute joint injury and develops through subsequent degradation of cartilage matrix components and tissue remodeling. PTOA affects 12% of the population who experience osteoarthritis and is attributed to over $3 billion dollars annually in healthcare costs. It is currently unknown whether articulation of the joint post-injury helps tissue healing or exacerbates cellular dysfunction and eventual death.
View Article and Find Full Text PDFBackground: Early intervention with mesenchymal stem cells (MSCs) after articular trauma has the potential to limit progression of focal lesions and prevent ongoing cartilage degeneration by modulating the joint environment and/or contributing to repair. Integrin α10β1 is the main collagen type II binding receptor on chondrocytes, and MSCs that are selected for high expression of the α10 subunit have improved chondrogenic potential. The ability of α10β1-selected (integrin α10) MSCs to protect cartilage after injury has not been investigated.
View Article and Find Full Text PDF. BioCartilage is a desiccated, particulated cartilage allograft used for repair of focal cartilage defects. It is mixed with a biologic such as bone marrow concentrate (BMC), pressed into a contained defect, and sealed with fibrin glue.
View Article and Find Full Text PDFThe objectives of this study were to evaluate temporal changes in lubricin, hyaluronan (HA), and HA molecular weight (MW) distributions in three distinct models of equine joint injury affecting the carpal (wrist), tarsal (ankle), and femoropatellar (knee) joints. To establish ranges for lubricin, HA, and HA MW distributions across multiple joints, we first evaluated clinically healthy, high-motion equine joints. Synovial fluid was collected from high-motion joints in horses without clinical signs of joint disease (n = 11 horses, 102 joints) and from research horses undergoing carpal osteochondral fragmentation (n = 8), talar cartilage impact injury (n = 7), and femoral trochlear ridge full-thickness cartilage injury (n = 22) prior to and following arthroscopically induced joint injury.
View Article and Find Full Text PDFPosttraumatic osteoarthritis (PTOA) involves the mechanical and biological deterioration of articular cartilage that occurs following joint injury. PTOA is a growing problem in health care due to the lack of effective therapies combined with an aging population with high activity levels. Recently, acute mitochondrial dysfunction and altered cellular respiration have been associated with cartilage degeneration after injury.
View Article and Find Full Text PDFBackground: Equine diagnostic anaesthesia can be a useful tool in challenging lameness examinations. However, anaesthetics diffuse over time leading to nonspecific desensitisation of periarticular structures. Nerves that convey sensation from the distal limb to the central nervous system pass in close proximity to the caudal stifle joint capsule.
View Article and Find Full Text PDFMounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses.
View Article and Find Full Text PDFUnlabelled: No disease-modifying osteoarthritis (OA) drugs are available to prevent posttraumatic osteoarthritis (PTOA). Mitochondria (MT) mediate the pathogenesis of many degenerative diseases, and recent evidence indicates that MT dysfunction is a peracute (within minutes to hours) response of cartilage to mechanical injury. The goal of this study was to investigate cardiolipin-targeted mitoprotection as a new strategy to prevent chondrocyte death and cartilage degeneration after injury.
View Article and Find Full Text PDF