Introduction: Extra-uterine life support technology could provide a more physiologic alternative for the treatment of extremely premature infants, as it allows further fetal growth and development ex utero. Animal studies have been carried out which involved placing fetuses in a liquid-filled incubator, with oxygen supplied through an oxygenator connected to the umbilical vessels. Hence, by delaying lung exposure to air, further lung development and maturation can take place.
View Article and Find Full Text PDFTo improve care for extremely premature infants, the development of an extrauterine environment for newborn development is being researched, known as Artificial Placenta and Artificial Womb (APAW) technology. APAW facilitates extended development in a liquid-filled incubator with oxygen and nutrient supply through an oxygenator connected to the umbilical vessels. This setup is intended to provide the optimal environment for further development, allowing further lung maturation by delaying gas exposure to oxygen.
View Article and Find Full Text PDFBackground: Research into Artificial Placenta and Artificial Womb (APAW) technology for extremely premature infants (born < 28 weeks of gestation) is currently being conducted in animal studies and shows promising results. Because of the unprecedented nature of a potential treatment and the high-risk and low incidence of occurrence, translation to the human condition is a complex task. Consequently, the obstetric procedure, the act of transferring the infant from the pregnant woman to the APAW system, has not yet been established for human patients.
View Article and Find Full Text PDFBackground: To obtain a better understanding of the wearing habits and preferences of Adolescent Idiopathic Scoliosis (AIS) patients undergoing rigid brace treatment, we examine what factors contribute to patients' perceived discomfort during the treatment.
Methods: Seventeen AIS patients treated with a rigid brace were recruited. We asked them to complete a questionnaire and participate in an interview study.
Liquid-based perinatal life support (PLS) technology will probably be applied in a first-in-human study within the next decade. Research and development of PLS technology should not only address technical issues, but also consider socio-ethical and legal aspects, its application area, and the corresponding design implications. This paper represents the consensus opinion of a group of healthcare professionals, designers, ethicists, researchers and patient representatives, who have expertise in tertiary obstetric and neonatal care, bio-ethics, experimental perinatal animal models for physiologic research, biomedical modeling, monitoring, and design.
View Article and Find Full Text PDFNeonatal patient simulators (NPS) are artificial patient surrogates used in the context of medical simulation training. Neonatologists and nursing staff practice clinical interventions such as chest compressions to ensure patient survival in the case of bradycardia or cardiac arrest. The simulators used currently are of low physical fidelity and therefore cannot provide qualitative insight into the procedure of chest compressions.
View Article and Find Full Text PDFCardiopulmonary resuscitation manikins are used for training personnel in performing cardiopulmonary resuscitation. State-of-the-art cardiopulmonary resuscitation manikins are still anatomically and physiologically low-fidelity designs. The aim of this research was to design a manikin that offers high anatomical and physiological fidelity and has a cardiac and respiratory system along with integrated flow sensors to monitor cardiac output and air displacement in response to cardiopulmonary resuscitation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
We present a novel technology to support playful rehabilitation of arm-hand performance for stroke survivors. The system combines tangible tabletop interaction with wearable technology, to encourage stroke patients to train their arm-hand skills in a task-oriented manner, while a jacket supporting tilt-sensing and vibrotactile feedback guides patients regarding the correct execution of exercises and specifically to avoid compensatory movements. We present the iterative client centered development of this technology and its on going development.
View Article and Find Full Text PDF