To study the formation and the architecture of exocytotic site, we generated plasma membrane (PM) sheets on electron microscopy grids to visualize the membrane organization and quantitatively analyze distributions of specific proteins and lipids. This technique allows observing the cytoplasmic face of the plasma membrane by transmission electron microscope. The principle of this approach relies on application of mechanical forces to break open cells.
View Article and Find Full Text PDFDetermining the path of single ribonucleoprotein (RNP) particles through the 100 nm-wide nuclear pore complex (NPC) by fluorescence microscopy remains challenging due to resolution limitation and RNP labeling constraints. By using high-pressure freezing and electron tomography, here we captured snapshots of the translocation of native RNP particles through NPCs in yeast and analyzed their trajectory at nanometer-scale resolution. Morphological and functional analyses indicate that these particles mostly correspond to pre-ribosomes.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
July 2019
Annexin A2 (AnxA2) is a calcium and lipid binding protein involved in neuroendocrine secretion. We have previously demonstrated that AnxA2 participates in the formation and/or stabilization of lipid microdomains required for structural and spatial organization of the exocytotic machinery in chromaffin cells. However, the regulation of AnxA2 is not fully understood.
View Article and Find Full Text PDFAnnexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells.
View Article and Find Full Text PDFLoss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways.
View Article and Find Full Text PDFUnderstanding the relationship between the topological dynamics of nuclear subdomains and their molecular function is a central issue in nucleus biology. Pre-nucleolar bodies (PNBs) are transient nuclear subdomains, which form at telophase and contain nucleolar proteins, snoRNPs and pre-ribosomal RNAs (pre-rRNAs). These structures gradually disappear in early G1 phase and are currently regarded as reservoirs of nucleolar factors that participate to post-mitotic reassembly of the nucleolus.
View Article and Find Full Text PDFA double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.
View Article and Find Full Text PDFBackground: Staphylococcus aureus releases virulence factors (VF) that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting beta2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal) combined with a corticosteroid (fluticasone propionate, FP) was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant.
View Article and Find Full Text PDFPLGA nanoparticles were prepared via a modified W/O/W emulsion solvent diffusion process, in which all formulation components were fully biocompatible and biodegradable. Different independent processing parameters were systematically studied. Nanoparticles were characterized by DLS (particle size, polydispersity, zeta-potential) and TEM/AFM (surface morphology).
View Article and Find Full Text PDFThe activity of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) can be mediated by surface G protein-coupled receptors such as the beta(2)-adrenergic receptor. In this study, we explored the effect of a long-acting beta(2)-adrenergic agonist, salmeterol, on the CFTR-dependent secretory capacity of a human CF tracheal gland serous cell line (CF-KM4), homozygous for the delF508 mutation. We showed that, compared with the untreated CF serous cells, a 24-hour pre-incubation period with 200 nM salmeterol induced an 83% increase in delF508-CFTR-mediated chloride efflux.
View Article and Find Full Text PDFSilicon nanowires were fabricated for the first time by electrochemical template synthesis at room temperature. This innovative, cheap, and simple process consists of electroreduction of Si ions using a nonaqueous solvent and insulating nanoporous membranes with average pore diameters from 400 to 15 nm which fix the nanowires diameters. Characterization techniques such as scanning and transmission electron microscopies, infrared absorption measurements, X-ray diffraction experiments, energy dispersive X-ray, and Raman spectrometries show that the as-deposited silicon nanowires are amorphous, composed of pure Si and homogeneous in sizes with average diameters and lengths well matching with the nanopores' diameters and the thicknesses of the membranes.
View Article and Find Full Text PDFWe propose two methods for characterizing the spatio-temporal behavior of cell populations in culture. The first method, image auto-correlation microscopy (IACM), allows us to characterize the variation in the number of objects as a function of time, thus enabling the quantification of the clustering properties of cell populations to be performed. The second method, image cross-correlation microscopy (ICCM), allows us to characterize the migration properties of cell populations.
View Article and Find Full Text PDFThe absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na(+) absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.
View Article and Find Full Text PDFPeripheral-type benzodiazepine receptor (PBR) is an 18 kDa high-affinity drug ligand and cholesterol binding protein involved in various cell functions. Antisera for distinct PBR areas identified immunoreactive proteins of 18, 40, and 56 kDa and occasionally 72, 90, and 110 kDa in testicular Leydig and breast cancer cells. These sizes may correspond to PBR polymers and correlated to the levels of reactive oxygen species.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2001
Recombinant mouse 18 kDa peripheral-type benzodiazepine receptor (PBR) protein was overexpressed in Escherichia coli and isolated using a His. Bind metal chelation resin. Recombinant PBR protein was purified with sodium dodecyl sulfate and reincorporated into liposomes using Bio-Beads SM2 as a detergent removing agent.
View Article and Find Full Text PDFThe atomic structure of sarcoplasmic reticulum Ca(2+)-ATPase, in a Ca(2+)-bound conformation, has recently been elucidated (Toyoshima, C., Nakasako, M., Nomura, H.
View Article and Find Full Text PDF