Introduction: The prospective, nonrandomized, multicenter Q-FFICIENCY study demonstrated the safety and 12-month efficacy of paroxysmal atrial fibrillation (AF) ablation with the novel QDOT MICRO temperature-controlled, contact force-sensing, radiofrequency (RF) catheter. Participants underwent pulmonary vein isolation with very high-power short-duration (vHPSD) mode (90 W, ≤4 s) alone or combined with conventional-power temperature-controlled (CPTC) mode (25-50 W). This study aimed to assess quality-of-life (QOL) and healthcare utilization (HCU) benefits experienced by Q-FFICIENCY study participants.
View Article and Find Full Text PDFBackground: QDOT MICRO (QDM) is a novel contact force-sensing catheter optimized for temperature-controlled radiofrequency (RF) ablation. The very high-power short-duration (vHPSD) algorithm modulates power, maintaining target temperature during 90 W ablations for ≤4 seconds.
Objectives: This study aims to evaluate safety and 12-month effectiveness of the QDM catheter in paroxysmal atrial fibrillation (AF) ablation using the vHPSD mode combined with conventional-power temperature-controlled (CPTC) mode.
Purpose: The prospective, multicenter SMART SF trial demonstrated the acute safety and effectiveness of the 56-hole porous tip irrigated contact force (CF) catheter for drug-refractory paroxysmal atrial fibrillation (PAF) ablation with a low primary adverse event rate (2.5%), leading to FDA approval of the catheter. Here, we are reporting the long-term effectiveness and safety results that have not yet been reported.
View Article and Find Full Text PDFBackground: Recent economic trends influenced by healthcare reform, an aging population, changes in physician reimbursement, and increasing competition will have a significant impact on the electrophysiology workforce. Therefore, there is an important need to obtain information about the EP workforce to assess training of arrhythmic healthcare providers in order the meet the requisite societal need. This report summarizes the data collected by the HRS Workforce Study Task Force in relation to physician workforce issues.
View Article and Find Full Text PDFRecent studies suggest that RhoA and Rac1 mediate hypertrophic signals in cardiac myocyte hypertrophy. However, effects on cardiac function caused by inhibition of their activity in the heart have yet to be evaluated. Cardiac-specific inhibition of Rho family protein activities was achieved by expressing Rho GDIalpha, an endogenous specific GDP dissociation inhibitor for Rho family proteins, using the alpha-myosin heavy-chain promoter.
View Article and Find Full Text PDFAdult transgenic mice with muscle-specific overexpression of insulin-like growth factor (IGF)-I have enlarged skeletal muscles. In this study, we; 1) characterized the development of muscle hypertrophy with respect to fiber type, age, and sex; 2) determined the primary anabolic process responsible for development of hypertrophy; and 3) identified secondary effects of muscle hypertrophy on body composition. Transgene expression increased with age and was present only in fibers expressing type IIB fast myosin heavy chain.
View Article and Find Full Text PDFIn the present study we determined the long-term effects of persistent, local insulin-like growth factor I (IGF-I) expression on cardiac function in the SIS2 transgenic mouse. Cardiac mass/tibial length was increased in SIS2 mice by 10 wk of age; this cardiac hypertrophy became more pronounced later in life. Peak aortic outflow velocity, a correlate of cardiac output, was increased at 10 wk in SIS2 mice but was decreased at 52 wk.
View Article and Find Full Text PDF