Publications by authors named "Delattre Cedric"

Flavonoids have been documented to have good antioxidant activities in vitro. In recent years, reports on the antioxidant activities of flavone glycosides, a subclass of flavonoids, have attracted great attention. Despite the wealth of information on this subject, the correlation between structure and function is not well understood.

View Article and Find Full Text PDF

Alginates are anionic polysaccharides present in the cell walls of brown seaweeds. Various biological activities of alginate and its derivatives have been described. In this study, we assessed the potential of alginate obtained from (formerly ) to scavenge free radicals and function as a ferric ion reductor.

View Article and Find Full Text PDF

The use of fungal chitosan as an antiseptic in wine appears as a promising alternative to sulfur dioxide for the elimination of sensitive strains. Nevertheless, its utilization raises the question, "how are the treated wines different from the untreated ones?" Chitosan treatment residues were sought in the oligosaccharide and polysaccharide fractions and among 224 low MW ions (<1800 g·mol) in several wines by using liquid chromatography (size exclusion HPLC or LC-MS) and GC-MS. Standard oenological parameters were also examined as well as possible sensory modifications by a panel of tasters composed of experts and non-experts.

View Article and Find Full Text PDF

The fibroblast growth factor-2 (FGF-2) is a critical protein for biological processes such as angiogenesis and tissue regeneration. Recently, hydrogels based on semi-synthetic sulfated polysaccharides have been developed for the controlled delivery of FGF-2. These affinity-based FGF-2 carriers utilizing hydrogels based on sulfated polysaccharides enable sustained delivery of FGF-2, yet choice of materials is limited.

View Article and Find Full Text PDF

The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents.

View Article and Find Full Text PDF

To address the increasing demand for sensitive and selective sample preparation methods for metal analysis; preconcentration of intended analyte from complex sample matrices before analysis is required to improve the performance of analysis instruments. In this study, we have engineered a sustainable and portable syringe-based hand-operable three-dimensionally (3D) printed sample pretreatment apparatus equipped with a replaceable bio-based thin- film metal sorbent. This device effectively addresses the challenges of sample matrix interference in metal analysis.

View Article and Find Full Text PDF

Chitosan is a deacetylated polymer of chitin that is extracted mainly from the exoskeleton of crustaceans and is the second-most abundant polymer in nature. Chitosan hydrogels are preferred for a variety of applications in bio-related fields due to their functional properties, such as antimicrobial activity and wound healing effects; however, the existing hydrogelation methods require toxic reagents and exhibit slow gelation times, which limit their application in biological fields. Therefore, a mild and rapid gelation method is necessary.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the economic and ecological potential of using lignocellulosic biomass by-products by creating innovative hydrogels from wheat straw and microcellulose through a specific oxidation process.
  • Advanced analyses like FTIR, viscosity, and transmittance were conducted to characterize the new hydrogels, demonstrating their unique properties, particularly the superior printability of the wheat straw-based hydrogel.
  • The research highlights a successful method to transform agricultural waste into affordable and sustainable polymers, indicating promising applications for these bioproducts in 3D printing technology.
View Article and Find Full Text PDF

A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp.

View Article and Find Full Text PDF

Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break.

View Article and Find Full Text PDF

The intense urge to replace conventional polymers with ecofriendly monomers is a step towards green products. The novelty of this study is the extraction of starch from the biowaste of wheat bran (WB) and banana peel (BP) for use as a monomer in the form of chain extenders. For the synthesis of polyurethane (PU) elastomers, polyethylene glycol (PEG) bearing an average molecular weight = 1000 g mol was used as a macrodiol, which was reacted with isophorone diisocyanate (IPDI) to develop NCO-terminated prepolymer chains.

View Article and Find Full Text PDF

In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds C and C against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays.

View Article and Find Full Text PDF

Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells.

View Article and Find Full Text PDF

Marine algae are the most abundant resource in the marine environment and are still a promising source of bioactive compounds including hydrocolloids. This study contributes to the evaluation of the biological and biotechnological potentials of two water soluble polysaccharides, namely alginates (AHS) and fucoidan (FHS), extracted and purified from Halopteris scoparia, an abundant Tunisian brown macroalgae collected in Tunisia (Tabarka region). The total sugars, neutral monosaccharides, uronic acids, proteins, polyphenols, and sulfate groups contents were quantified for both fractions, as well as their functional groups and primary structural features by Fourier transform infrared spectroscopy, ionic and/or gas chromatography and nuclear magnetic resonance analyses.

View Article and Find Full Text PDF

In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol-gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange stage. The formulated drug-loaded polymer structures were characterized in terms of their physicochemical properties, solid-state behavior, and cytotoxicity.

View Article and Find Full Text PDF

Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields.

View Article and Find Full Text PDF

Taken separately, a single sweet sorghum stem bioconversion process for bioethanol and biomethane production only leads to a partial conversion of organic matter. The direct fermentation of crushed whole stem coupled with the methanization of the subsequent solid residues in a two-stage process was experimented to improve energy bioconversion yield, efficiency, and profitability. The raw stalk calorific value was 17,144.

View Article and Find Full Text PDF

In the past decades, the microencapsulation of mammalian cells into microparticles has been extensively studied for various in vitro and in vivo applications. The aim of this study was to demonstrate the viability of bacterial polyglucuronic acid (PGU), an exopolysaccharide derived from bacteria and composed of glucuronic acid units, as an effective material for cell microencapsulation. Using the method of dropping an aqueous solution of PGU-containing cells into a Ca-loaded solution, we produced spherical PGU microbeads with >93 % viability of the encapsulated human hepatoma HepG2 cells.

View Article and Find Full Text PDF

Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds and , respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates.

View Article and Find Full Text PDF

Glucuronan is a polysaccharide composed of β-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the exploration of new microorganisms producing glucuronan. In this study, the strain (Rhizobia), was identified as a wild producer of an exopolysaccharide (RhrBR46) related to glucuronan.

View Article and Find Full Text PDF

The aim of this study was to identify the chemical composition and sequential structure of alginate isolated from harvested in the Bulgarian Black Sea, as well as its effects in histamine-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats with systemic inflammation, and the levels of TNF-α in a model of acute peritonitis in rats were also investigated. The structural characterization of the polysaccharide was obtained by FTIR, SEC-MALS, and H NMR.

View Article and Find Full Text PDF

The use of hydrogel dressings has become increasingly popular as a scaffold for skin tissue engineering. Herein, we have developed an innovative wound dressing using chitosan, fibrinogen, nisin, and EDTA as an effective antibacterial scaffold for wound treatment. The structural and functional characteristics of the hydrogel, including morphology, mechanical strength, drug encapsulation and release, swelling behaviors, blood coagulation, cytotoxicity, and antibacterial activity, were studied.

View Article and Find Full Text PDF

Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues.

View Article and Find Full Text PDF

Recently, the scientific community is interested in the synthesis of biodegradable and bioactive packaging to replace oil-based ones. Therefore, the present study aims to elaborate an active and biodegradable material using chitosan (CS-film) combined with pelargonium, tea tree, marjoram, and thyme essential oils (EOs), and then evaluate their different properties and biological activities. The obtained data showed an augmentation in CS-film thickness and opacity following the addition of EOs ranging from 17 ± 3 to 42 ± 2 μm and from 1.

View Article and Find Full Text PDF

Extrusion and hot compressing molding processes were used to create bio-polyethylene (BioPE) composites reinforced with argan byproducts (shell, pulp, and argan cake) as bio-fillers. The thermal stability of the composites wass analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Dynamical mechanical analysis and rheological testing were used to investigate their mechanical properties.

View Article and Find Full Text PDF