Publications by authors named "Delanthi Salgado-Commissariat"

How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD) responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song.

View Article and Find Full Text PDF

Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event-related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird.

View Article and Find Full Text PDF

The purpose of present study is to analyze the brain proteome of the nucleus ovoidalis (OV) and Field L regions of the zebra finch (Taeniopygia guttata). The OV and Field L are important brain nuclei in song learning in zebra finches; their analyses identified a total of 79 proteins. The zebra finch brain proteome analyses are poised to provide clues about cell and circuit layout as well as possible circuit function.

View Article and Find Full Text PDF

Electrophysiological and activity-dependent gene expression studies of birdsong have contributed to the understanding of the neural representation of natural sounds. However, we have limited knowledge about the overall spatial topography of song representation in the avian brain. Here, we adapt the noninvasive functional MRI method in mildly sedated zebra finches (Taeniopygia guttata) to localize and characterize song driven brain activation.

View Article and Find Full Text PDF

Activation of neuronal nicotinic acetylcholine receptors (nAChRs) modulates the induction of long-term potentiation (LTP), a possible cellular mechanism for learning. This study was undertaken to determine the effects of activation of nAChRs by nicotine on long-term plasticity in the songbird zebra finch, which is a valuable model to study synaptic plasticity and its implications to behavioral learning. Electrophysiological recordings in the robust nucleus of the archistriatum (RA) in adult zebra finch brain slices reveal that tetanic stimulation alone does not produce LTP.

View Article and Find Full Text PDF