Background: The SCI-GDI is an accurate and effective metric to summarize gait kinematics in adults with SCI. It is usually computed with the information registered with a photogrammetry system because it requires accurate information of pelvic and hip movement in the three anatomic planes, which is hard to record with simpler systems. Additionally, due to being developed from the GDI, the SCI-GDI is built upon nine joint movements selected for a pediatric population with cerebral palsy, for which the GDI was originally developed, but those nine movements are not necessarily as meaningful for adults with SCI.
View Article and Find Full Text PDFBackground: To overcome the application limitations of functional electrical stimulation (FES), such as fatigue or nonlinear muscle response, the combination of neuroprosthetic systems with robotic devices has been evaluated, resulting in hybrid systems that have promising potential. However, current technology shows a lack of flexibility to adapt to the needs of any application, context or individual. The main objective of this study is the development of a new modular neuroprosthetic system suitable for hybrid FES-robot applications to meet these needs.
View Article and Find Full Text PDFFalls are a severe problem in older adults, often resulting in severe consequences such as injuries or loss of consciousness. It is crucial to screen fall risk in order to prescribe appropriate therapies that can potentially prevent falls. Identifying individuals who have experienced falls in the past, commonly known as fallers, is used to evaluate fall risk, as a prior fall indicates a higher likelihood of future falls.
View Article and Find Full Text PDFBackground: Despite technical advances in the field of wearable robotic devices (WRD), there is still limited user acceptance of these technologies. While usability often comes as a key factor influencing acceptance, there is a scattered landscape of definitions and scopes for the term. To advance usability evaluation, and to integrate usability features as design requirements during technology development, there is a need for benchmarks and shared terminology.
View Article and Find Full Text PDFBackground: Recently we reported the design and evaluation of floating semi-implantable devices that receive power from and bidirectionally communicate with an external system using coupling by volume conduction. The approach, of which the semi-implantable devices are proof-of-concept prototypes, may overcome some limitations presented by existing neuroprostheses, especially those related to implant size and deployment, as the implants avoid bulky components and can be developed as threadlike devices. Here, it is reported the first-in-human acute demonstration of these devices for electromyography (EMG) sensing and electrical stimulation.
View Article and Find Full Text PDFBackground: There are a lot of tools to use for fall assessment, but there is not yet one that predicts the risk of falls in the elderly. This study aims to evaluate the use of the G-STRIDE prototype in the analysis of fall risk, defining the cut-off points to predict the risk of falling and developing a predictive model that allows discriminating between subjects with and without fall risks and those at risk of future falls.
Methods: An observational, multicenter case-control study was conducted with older people coming from two different public hospitals and three different nursing homes.
Background: Electromyography (EMG) is a classical technique used to record electrical activity associated with muscle contraction and is widely applied in Biomechanics, Biomedical Engineering, Neuroscience and Rehabilitation Robotics. Determining muscle activation onset timing, which can be used to infer movement intention and trigger prostheses and robotic exoskeletons, is still a big challenge. The main goal of this paper was to perform a review of the state-of-the-art of EMG onset detection methods.
View Article and Find Full Text PDFBackground: The Gait Deviation Index for Spinal Cord Injury (SCI-GDI) was recently proposed as a dimensionless multivariate kinematic measure based on 21 gait features derived from 3-dimensional kinematic data which quantifies gait impairment of adult population with incomplete spinal cord injury (iSCI) relative to the normative gait of a healthy group. Nevertheless, no validity studies of the SCI-GDI have been published to date.
Objective: To assess the construct validity of the SCI-GDI in adult population following iSCI.
Objective: We aim to determine a comprehensive set of requirements, perceptions, and expectations that people with spinal cord injury (SCI) and the clinicians in charge of their rehabilitation have regarding the use of wearable robots (WR) for gait rehabilitation.
Background: There are concerns due to the limited user acceptance of WR for gait rehabilitation. Developers need to emphasize understanding the needs and constraints of all stakeholders involved, including the real-life dynamics of rehabilitation centers.
The GSTRIDE database contains information of the health status assessment of 163 elderly adults. We provide socio-demographic data, functional and frailty variables, and the outcomes from tests commonly performed for the evaluation of elder people. The database contains gait parameters estimated from the measurements of an Inertial Measurement Unit (IMU) placed on the foot of volunteers.
View Article and Find Full Text PDFFalls are one of the main concerns in the elderly population due to their high prevalence and associated consequences. Guidelines for the management of the elder with falls are comprised of multidimensional assessments, especially gait and balance. Daily clinical practice needs for timely, effortless, and precise tools to assess gait.
View Article and Find Full Text PDFNowadays, robotic technology for gait training is becoming a common tool in rehabilitation hospitals. However, its effectiveness is still controversial. Traditional control strategies do not adequately integrate human intention and interaction and little is known regarding the impact of exoskeleton control strategies on muscle coordination, physical effort, and user acceptance.
View Article and Find Full Text PDFObjective: Wireless power transfer (WPT) is used as an alternative to batteries to accomplish miniaturization in electronic medical implants. However, established WPT methods require bulky parts within the implant or cumbersome external systems, hindering minimally invasive deployments and the development of networks of implants. As an alternative, we propose a WPT approach based on volume conduction of high frequency (HF) current bursts.
View Article and Find Full Text PDFThe Gait Deviation Index (GDI) is a dimensionless multivariate measure of overall gait pathology represented as a single score that indicates the gait deviation from a normal gait average. It is calculated using kinematic data recorded during a three-dimensional gait analysis and an orthonormal vectorial basis with 15 gait features that was originally obtained using singular value decomposition and feature analysis on a dataset of children with cerebral palsy. Ever since, it has been used as an outcome measure to study gait in several conditions, including spinal cord injury (SCI).
View Article and Find Full Text PDFFront Hum Neurosci
April 2022
The Gait Deviation Index (GDI) is a multivariate measure of overall gait pathology based on 15 gait features derived from three-dimensional (3D) kinematic data. GDI aims at providing a comprehensive, easy to interpret, and clinically meaningful metric of overall gait function. It has been used as an outcome measure to study gait in several conditions: cerebral palsy (CP), post-stroke hemiparetic gait, Duchenne muscular dystrophy, and Parkinson's disease, among others.
View Article and Find Full Text PDFPersonalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
Walking function recovery in spinal cord injury (SCI) is tackled through several therapeutic approaches in which precise evaluation is essential. A systematic review was performed to provide an updated qualitative review of walking ability outcome measures in SCI and to analyze their psychometric properties. PubMed, Cochrane, and PEDro databases were consulted until 1 April 2020.
View Article and Find Full Text PDFBackground: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method able to modulate neuronal activity after stroke. The aim of this systematic review was to determine if tDCS combined with robotic therapy (RT) improves limb function after stroke when compared to RT alone.
Methods: A search for randomized controlled trials (RCTs) published prior to July 15, 2021 was performed.
A growing interest in Socially Assistive Robotics in Physical Rehabilitation is currently observed; some of the benefits highlight the capability of a social robot to support and assist rehabilitation procedures. This paper presents a perception study that aimed to evaluate clinicians' and patients' perception of a social robot that will be integrated as part of Lokomat therapy. A total of 88 participants were surveyed, employing an online questionnaire based on the Unified Theory of Acceptance and Use of Technology (UTAUT).
View Article and Find Full Text PDFObjective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling.
View Article and Find Full Text PDFBackground: FES (Functional Electrical Stimulation) neuroprostheses have long been a permanent feature in the rehabilitation and gait support of people who had a stroke or have a Spinal Cord Injury (SCI). Over time the well-known foot switch triggered drop foot neuroprosthesis, was extended to a multichannel full-leg support neuroprosthesis enabling improved support and rehabilitation. However, these neuroprostheses had to be manually tuned and could not adapt to the persons' individual needs.
View Article and Find Full Text PDFObjective: To explore user-centered design methods currently implemented during development of lower limb wearable robots and how they are utilized during different stages of product development.
Background: Currently, there appears to be a lack of standardized frameworks for evaluation methods and design requirements to implement effective user-centered design for safe and effective clinical or ergonomic system application.
Method: Responses from a total of 191 experts working in the field of lower limb exoskeletons were analyzed in this exploratory survey.