The karst carbon sink caused by rock outcrops results in enrichment of the bicarbonate in soil, affecting the physiological process of plants in an all-round way. Water is the basis of plant growth and metabolic activities. In heterogeneous rock outcrop habitats, the impact of bicarbonate enrichment on the intracellular water metabolism of plant leaf is still unclear, which needs to be revealed.
View Article and Find Full Text PDFThe changes in plant life behaviors and water status are accompanied by electrophysiological activities. In this study, the theoretical relationship between clamping force (C) and leaf resistance (R), capacitive reactance (X), inductive reactance (XL), impedance (Z), and capacitance (C) were exposed as 3-parameter exponential decay and linear models based on bioenergetics, respectively, for mangrove species. The intracellular water metabolism parameters and salt transport characteristics were also determined based on mechanical equations with influences of Sodium nitroprusside (SNP) and rewatering (R).
View Article and Find Full Text PDFWater consumed by photosynthesis and growth rather than transpiration accounts for only 1-3% of the water absorbed by roots. Leaf intracellular water transport rate (LIWTR) based on physiological impedance (Z) provides information on the transport traits of the leaf internal retained water, which helps determine the intracellular water status. plants were subjected to five different levels of relative soil water content (SWC ) (e.
View Article and Find Full Text PDFDrought is a key factor restricting plant survival, growth and development. The physiological parameters of plants are commonly used to determine the water status, in order to irrigate appropriately and save water. In this study, mulberry ( L.
View Article and Find Full Text PDFPlant Signal Behav
November 2021
The circadian clock regulates a wide range of physiological processes in plants. Here we showed the circadian variations of the electrical signals in L. and L.
View Article and Find Full Text PDFAlmost all life activities of plants are accompanied by electrophysiological information. Plant's electrical parameters are considered to be the fastest response to environment. In this study, the theoretically intrinsic relationships between the clamping force and leaf resistance (R) and inductive reactance (XL) were revealed as 3-parameter exponential decay based on bioenergetics for the first time.
View Article and Find Full Text PDFAlmost all of a plant's life activities involve electrochemical reactions. Plant electrical parameters respond quickly to environmental changes and are closely related to physiological activities. In this study, the theoretical intrinsic relationships between clamping force and leaf impedance (Z) or capacitive reactance (Xc) and capacitance (C) were revealed as 3-parameter exponential decay and linear models based on bioenergetics, respectively, for the first time.
View Article and Find Full Text PDFDimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency).
View Article and Find Full Text PDFJ Ethnobiol Ethnomed
January 2018
Background: Lǎo huǒ liàng tāng (Cantonese slow-cooked soup, CSCS) is popular in Guangdong, China, and is consumed by Cantonese people worldwide as a delicious appetizer. Because CSCS serves as an important part of family healthcare, medicinal plants and plant-derived products are major components of CSCS. However, a collated record of the diverse plant species and an ethnobotanical investigation of CSCS is lacking.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2014
Background: P deficiency in karst areas significantly influenced leaf photosynthesis and carbon metabolisms in plants which were bad for plant growth. Meanwhile, fertilizer application would cause lots of environmental problems. Therefore planning and developing P deficiency-resistant plants in karst areas are important to prevent shortage of P resources and reduce the environmental impacts of P supplementation.
View Article and Find Full Text PDF