Publications by authors named "Dekang Lv"

Unlabelled: Similar clinical manifestations and imaging features between biliary tract inflammatory lesion (BTI) and biliary tract cancer (BTC) pose significant challenges for the management of BTC. To date, the molecular characteristics of the relationship between biliary tract inflammatory lesion and biliary tract cancer remain poorly elucidated. Here, we performed target deep sequencing on 45 BTC patients and 31 BTI patients based on cell-free DNA (cfDNA) in plasma.

View Article and Find Full Text PDF

Background: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive.

View Article and Find Full Text PDF

Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how interactions between tumor-associated fibroblasts and lung cancer cells influence cancer progression and resistance to therapy, particularly after chemotherapy.
  • Researchers found that a specific subset of fibroblasts, characterized by the zinc transporter ZIP1, is more abundant following chemotherapy and forms direct connections (gap junctions) with cancer cells.
  • These ZIP1-positive fibroblasts enhance chemoresistance in lung cancer by acting as a reservoir for zinc, which they transfer to cancer cells, thereby promoting resistance mechanisms like ABCB1 activation.
View Article and Find Full Text PDF

Background: Infiltrating immune and stromal cells are important components of the endometrial cancer (EC) microenvironment, which has a significant effect on the biological behavior of EC, suggesting that unique immune-related genes may be associated with the prognosis of EC. However, the association of immune-related genes with the prognosis of EC has not been elucidated. We attempted to identify immune-related genes with potentially prognostic value in EC using The Cancer Genome Atlas database and the relationship between immune microenvironment and EC.

View Article and Find Full Text PDF

Alternative splicing (AS) is significantly related to tumor development as well as a patient's clinical characteristics. This study was designed to systematically analyze the survival-associated AS signatures in Lung adenocarcinoma (LUAD). Among 30,735 AS events in 9,635 genes, we found that there were 1,429 AS in 1,125 genes which were conspicuously related to the overall survival of LUAD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Lung adenocarcinoma (LUAD) is a deadly cancer, and this study aims to identify a new prognostic model through an algorithm that calculates allele frequency deviation (AFD) to help predict patient outcomes.
  • The researchers developed the AFD algorithm and analyzed data from 102 patients, utilizing statistical methods like Kaplan-Meier analysis and receiver operating characteristic curves to assess its predictive power.
  • Findings showed that AFD can effectively classify patients into risk groups, indicating that those with high AFD values have significantly shorter overall survival and a higher risk of death compared to those with low AFD values, establishing AFD as an independent prognostic tool.
View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) is one of the most common types in the world with a high mortality rate. Despite advances in treatment strategies, the overall survival (OS) remains short. Our study aims to establish a reliable prognostic signature closely related to the survival of LUAD patients that can better predict prognosis and possibly help with individual monitoring of LUAD patients.

View Article and Find Full Text PDF

Alternative splicing (AS) is significantly related to the development of tumor and the clinical outcome of patients. In this study, our aim was to systematically analyze the survival-related AS signal in ovarian serous cystadenocarcinoma (OV) and estimate its prognostic validity in 48,049 AS events out of 21,854 genes. We studied 1,429 AS events out of 1,125 genes, which were significantly related to the overall survival (OS) in patients with OV.

View Article and Find Full Text PDF

Background: Owing to the rapid advances in DNA sequencing technologies, whole genome from more and more species are becoming available at increasing pace. For whole-genome analysis, idiograms provide a very popular, intuitive and effective way to map and visualize the genome-wide information, such as GC content, gene and repeat density, DNA methylation distribution, genomic synteny, etc. However, most available software programs and web servers are available only for a few model species, such as human, mouse and fly, or have limited application scenarios.

View Article and Find Full Text PDF

Purpose: Mixed phenotype acute leukemia (MPAL) is a rare subtype of acute leukemia and its progressive genomic basis over time remains unclear. We aimed to investigate the longitudinal genomic evolution of MPAL from diagnosis to relapse.

Methods: We performed whole genome sequencing (WGS) on bone marrow (BM) samples obtained at the four stages of this disease in a male patient with Philadelphia chromosome positive (Ph+) MPAL, including primary, complete cytogenetic remission (CCR), complete molecular remission (CMR), and relapse stage during the 3 year follow-up period.

View Article and Find Full Text PDF

Introduction: Targeted therapies are based on specific gene alterations. Various specimen types have been used to determine gene alterations, however, no systemic comparisons have yet been made. Herein, we assessed alterations in selected cancer-associated genes across varying sample sites in lung cancer patients.

View Article and Find Full Text PDF

The liquid biopsy is being integrated into cancer diagnostics and surveillance. However, critical questions still remain, such as how to precisely evaluate cancer mutation burden and interpret the corresponding clinical implications. Herein, we evaluated the role of peripheral blood cell-free DNA (cfDNA) in characterizing the dynamic mutation alterations of 48 cancer driver genes from cervical cancer patients.

View Article and Find Full Text PDF

Background: Differential gene expression patterns are commonly used as biomarkers to predict treatment responses among heterogeneous tumors. However, the link between response biomarkers and treatment-targeting biological processes remain poorly understood. Here, we develop a prognosis-guided approach to establish the determinants of treatment response.

View Article and Find Full Text PDF

Background: Breast cancer stem cells (BCSCs) are considered responsible for cancer relapse and drug resistance. Understanding the identity of BCSCs may open new avenues in breast cancer therapy. Although several discoveries have been made on BCSC characterization, the factors critical to the origination of BCSCs are largely unclear.

View Article and Find Full Text PDF

Investigation of spontaneous mutations by next-generation sequencing technology has attracted extensive attention lately due to the fundamental roles of spontaneous mutations in evolution and pathological processes. However, these studies only focused on the mutations accumulated through many generations during long-term (possibly be years of) culturing, but not the freshly generated mutations that occur at very low frequencies. In this study, we established a molecularly barcoded deep sequencing strategy to detect low abundant spontaneous mutations in genomes of bacteria cell cultures.

View Article and Find Full Text PDF

The relationship between CpG content and DNA methylation has attracted considerable interest in recent years. Direct or indirect methods have been developed to investigate their regulatory functions based on various hypotheses, large cohort studies, and meta-analyses. However, all of these analyses were performed at units of CpG blocks and, thus, the influence of finer genome structure has been neglected.

View Article and Find Full Text PDF

Rad6 and Bre1, ubiquitin-conjugating E2 and E3 enzymes respectively, are responsible for histone H2B lysine 123 mono-ubiquitination (H2Bub1) in Saccharomyces cerevisiae. Previous studies have shown that Rad6 and Bre1 regulate telomere length and recombination. However, the underlying molecular mechanism remains largely unknown.

View Article and Find Full Text PDF

Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant adult brain tumor generally associated with high level of cellular heterogeneity and a dismal prognosis. Long noncoding RNAs (lncRNAs) are emerging as novel mediators of tumorigenesis. Recently developed single-cell RNA-seq provides an unprecedented way for analysis of the cell-to-cell variability in lncRNA expression profiles.

View Article and Find Full Text PDF

The Hippo (Hpo) pathway controls tissue growth and organ size by regulating the activity of transcriptional co-activator Yorkie (Yki), which associates with transcription factor Scalloped (Sd) in the nucleus to promote downstream target gene expression. Here we identify a novel protein Sd-Binding-Protein (SdBP)/Tgi, which directly competes with Yki for binding to Sd through its TDU domains and inhibits the Sd-Yki transcriptional activity. We also find that SdBP retains Yki in the nucleus through the association with Yki WW domains via its PPXY motifs.

View Article and Find Full Text PDF

Recent discoveries show that TIFY family genes are plant-specific genes involved in the response to several abiotic stresses, also acting as key regulators of jasmonate signaling in Arabidopsis thaliana. However, there is limited information about this gene family in wild soybean, nor is its role in plant bicarbonate stress adaptation completely understood. Here, we isolated and characterized a novel TIFY family gene, GsTIFY10, from Glycine soja.

View Article and Find Full Text PDF

Transcriptome of Glycine soja leaf tissue during a detailed time course formed a foundation for examining transcriptional processes during NaHCO(3) stress treatment. Of a total of 2,310 detected differentially expressed genes, 1,664 genes were upregulated and 1,704 genes were downregulated at various time points. The number of stress-regulated genes increased dramatically after a 6-h stress treatment.

View Article and Find Full Text PDF

Background: Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of saline-alkaline stress transcriptome is mostly focused on saline (NaCl) stress and only limited information on alkaline (NaHCO3) stress is available.

Results: Using Affymetrix Soybean GeneChip, we conducted transcriptional profiling on Glycine soja roots subjected to 50 mmol/L NaHCO3 treatment.

View Article and Find Full Text PDF