This paper investigates the attitude estimation errors caused by the deflections of vertical (DOV) in the case of a rotational inertial navigation system (INS) integrated with a global satellite navigation system (GNSS). It has been proved theoretically and experimentally that the DOV can introduce a tilt error to the INS/GNSS integration, whereas less attention has been given to its effect to the heading estimation. In fact, due to the intercoupling characteristic of attitude errors, the heading estimation of an INS/GNSS integrated navigation system can also be affected.
View Article and Find Full Text PDFThe attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques.
View Article and Find Full Text PDFWe propose a precise rolling angle measurement for a collimator to extend its application in 3D angular deformation measurement, with performance significantly superior to that of the traditional 2D technique. The rolling angle measurement is realized by taking full advantage of the point array image, which is projected in terms of the collimated beam. The measurement error is estimated according to the proposed algorithm.
View Article and Find Full Text PDFA new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines.
View Article and Find Full Text PDF