Publications by authors named "Dejing Pan"

Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC).

View Article and Find Full Text PDF
Article Synopsis
  • Thymic egress, the process allowing immune cells to leave the thymus, is largely controlled by the enzyme sphingosine-1-phosphate lyase (S1PL), and recent findings highlight cystathionine γ-lyase (CSE) and hydrogen sulfide (HS) as crucial regulators of this process.
  • The study demonstrated that knocking out CSE or inhibiting it with specific drugs led to increased migration of mature immune cells from the thymus into the bloodstream, a process that could be reversed by adding HS.
  • Findings also revealed that HS enhances S1P levels in different organs, suppresses pro-inflammatory cytokines, and inhibits S1PL activity, suggesting new therapeutic potential for targeting CSE and
View Article and Find Full Text PDF

Background: Budding yeast, Saccharomyces cerevisiae, has been extensively favored as a model organism in aging and age-related studies, thanks to versatile microfluidic chips for cell dynamics assay and replicative lifespan (RLS) determination at single-cell resolution. However, previous microfluidic structures aiming to immobilize haploid yeast may impose excessive spatial constraint and mechanical stress on cells, especially for larger diploid cells that sprout in a bipolar pattern.

Results: We developed a high-throughput microfluidic chip for diploid yeast long-term culturing (DYLC), optical inspection and cell-aging analysis.

View Article and Find Full Text PDF

To facilitate in situ comparative culturing of budding yeast cells in a precisely controlled microenvironment, we developed a microfluidic single-cell array (MiSCA) with 96 traps (16 rows × 6 columns) for single-cell immobilization. Through optimization of the distances between neighboring traps and the applied flow rates by using a hydraulic equivalent circuit of the fluidic network, yeast cells were delivered to each column of the array by laminar focused flows and reliably captured at the traps by hydrodynamic forces with about 90% efficiency of cell immobilization. Immobilized cells in different columns within the same device can then be cultured in parallel while being exposed to different media and compounds delivered by laminar flows.

View Article and Find Full Text PDF

High-resolution microscopic imaging may cause intensive image processing and potential impact of light irradiation on yeast replicative lifespan (RLS). Electrical impedance spectroscopy (EIS) could be alternatively used to perform high-throughput and label-free yeast RLS assays. Prior to fabricating EIS-integrated microfluidic devices for yeast RLS determination, systematic modeling and theoretical investigation are crucial for device design and optimization.

View Article and Find Full Text PDF

We identified a rare missense germline mutation in BARD1 (c.403G>A or p.Asp135Asn) as pathogenic using integrated genomics and transcriptomics profiling of germline and tumor samples from an early-onset triple-negative breast cancer patient who later was administrated with a PARP inhibitor for 2 months.

View Article and Find Full Text PDF

In vitro model of the human cardiac tissues generated from human induced pluripotent stem cells (hiPSCs) could facilitate drug discovery and patient-specific studies of physiology and disease. However, the immature state of hiPSC-derived cardiomyocytes (hiPSC-CMs) compared to adult myocardium is a key defect that must be overcome to enable the potential applications of hiPSC-CMs in drug testing. For this purpose, we developed a heart-on-a-chip device that contains microfluidic channels for long-term dynamic culture of cells, platinum wire electrodes for electrical stimulation of hiPSC-CMs, and gold electrode arrays as acquisition electrodes for real-time recording electrophysiological signals of cardiac tissues.

View Article and Find Full Text PDF

Microfluidic methodologies allow for automatic and high-throughput replicative lifespan (RLS) determination of single budding yeast cells. However, the resulted RLS is highly impacted by the robustness of experimental conditions, especially the microfluidic yeast-trapping structures, which are designed for cell retention, growth, budding, and daughter cell dissection. In this work, four microfluidic yeast-trapping structures, which were commonly used to immobilize mother cells and remove daughter cells for entire lifespan of budding yeast, were systematically investigated by means of finite element modeling (FEM).

View Article and Find Full Text PDF

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear.

View Article and Find Full Text PDF

The development of miniaturized devices for studying zebrafish embryos has been limited due to complicated fabrication and operation processes. Here, we reported on a microfluidic device that enabled the capture and culture of zebrafish embryos and real-time monitoring of dynamic embryonic development. The device was simply fabricated by bonding two layers of polydimethylsiloxane (PDMS) structures replicated from three-dimensional (3D) printed reusable molds onto a flat glass substrate.

View Article and Find Full Text PDF

This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single-cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites.

View Article and Find Full Text PDF

In the field of heart regeneration, the proliferative potential of cardiomyocytes in postnatal mice is under intense investigation. However, solely relying on immunostaining of proliferation markers, the long-term proliferation dynamics and potential of the cardiomyocytes cannot be readily addressed. Previously, we found that a promoter-driving reporter predominantly marked the proliferating lineages in mice.

View Article and Find Full Text PDF

Understanding the mechanism underlying the physiological divergence of species is a long-standing issue in evolutionary biology. The circadian clock is a highly conserved system existing in almost all organisms that regulates a wide range of physiological and behavioral events to adapt to the day-night cycle. Here, the interactions between hCK1ϵ/δ/DBT (Drosophila ortholog of CK1δ/ϵ) and serine-rich (SR) motifs from hPER2 (ortholog of Drosophila per) were reconstructed in a Drosophila circadian system.

View Article and Find Full Text PDF

RNA G-quadruplexes (G4s) play important roles in RNA biology. However, the function and regulation of mRNA G-quadruplexes in embryonic development remain elusive. Previously, we identified RHAU (DHX36, G4R1) as an RNA helicase that resolves mRNA G-quadruplexes.

View Article and Find Full Text PDF

In this report, two biodegradable star-shaped polyasparamide derivatives and four analogues modified with either mannose or folic acid moiety for preferential targeting of a difficult-to-transfect immune cell type, i.e., macrophage, have been synthesized.

View Article and Find Full Text PDF

The DEAH helicase RHAU (alias DHX36, G4R1) is the only helicase shown to have G-quadruplex (G4)-RNA resolvase activity and the major source of G4-DNA resolvase activity. Previous report showed RHAU mRNA expression to be elevated in human lymphoid and CD34(+) BM cells, suggesting a potential role in hematopoiesis. Here, we generated a conditional knockout of the RHAU gene in mice.

View Article and Find Full Text PDF

The tumor suppressor Smad4 mediates signaling by the transforming growth factor beta (TGF-beta) superfamily of ligands. Previous studies showed that several TGF-beta family members exert important functions in hematopoiesis. Here, we studied the role of Smad4 in adult murine hematopoiesis using the inducible Mx-Cre/loxP system.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the HLA-DRB1 gene polymorphism in the Lahu ethnic group of Yunnan, China, using a high-resolution PCR-SBT method, revealing 16 different alleles among 55 individuals.
  • The most common alleles found were HLA-DRB1 *12021, *09012, and *15011, which together comprised 60% of the total alleles, with several alleles being unique to this study and rare globally.
  • By comparing HLA-DRB1 frequencies across ethnic groups and constructing a phylogenetic tree, the research concludes that the Lahu ethnic group belongs to the southern Chinese population, rather than originating from northern ethnic groups, providing explanations
View Article and Find Full Text PDF

Exon 2 and intron 2 of the HLA DQB1 gene from 20 individuals were cloned and sequenced and eight alleles were obtained. Based on our analysis, the nucleotide diversity of the 5' end of intron 2 was higher than the synonymous nucleotide diversity of exon 2, which may be due to the lower GC content and the 'hitch-hiking effect'. In contrast, the opposite phenomenon was observed for the 3' end of intron 2, which may be the result of the recombination between the 3' end and 5' end of intron 2 and the subsequent genetic drift.

View Article and Find Full Text PDF

Objective: To make a comparative study of HLA-DQA1 and HLA-DRB1 allele frequencies in the cases of endometriosis and adeonmyosis.

Methods: The allelic types of HLA-DQA1 and HLA-DRB1 were detected by polymerase chain reaction-sequence specific primers (PCR-SSP) technique in 51 cases of endometriosis, 45 cases of adenomyosis, and 44 normal individuals as the control.

Results: The frequencies of HLA-DQA1*0401(7.

View Article and Find Full Text PDF