A synaptic memristor using 2D ferroelectric junctions is a promising candidate for future neuromorphic computing with ultra-low power consumption, parallel computing, and adaptive scalable computing technologies. However, its utilization is restricted due to the limited operational voltage memory window and low on/off current (I) ratio of the memristor devices. Here, it is demonstrated that synaptic operations of 2D InSe ferroelectric junctions in a planar memristor architecture can reach a voltage memory window as high as 16 V (±8 V) and I ratio of 10, significantly higher than the current literature values.
View Article and Find Full Text PDFTwo-dimensional (2D) materials are promising for resistive switching in neuromorphic and in-memory computing, as their atomic thickness substantially improve the energetic budget of the device and circuits. However, many 2D resistive switching materials struggle with complex growth methods or limited scalability. 2D tellurium exhibits striking characteristics such as simplicity in chemistry, structure, and synthesis making it suitable for various applications.
View Article and Find Full Text PDFC-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion.
View Article and Find Full Text PDFThe piezoelectric properties of two-dimensional semiconductor nanobubbles present remarkable potential for application in flexible optoelectronic devices, and the piezoelectric field has emerged as an efficacious pathway for both the separation and migration of photogenerated electron-hole pairs, along with inhibition of recombination. However, the comprehension and control of photogenerated carrier dynamics within nanobubbles still remain inadequate. Hence, this study is dedicated to underscore the importance of detection and detailed characterization of photogenerated electron-hole pairs in nanobubbles to enrich understanding and strategic manipulation in two-dimensional semiconductor materials.
View Article and Find Full Text PDF3D neuromorphic hardware system is first demonstrated in neuromorphic application as on-chip level by integrating array devices with CMOS circuits after wafer bonding (WB) and interconnection process. The memory window of synaptic device is degraded after WB and 3 Dimesional (3D) integration due to process defects and thermal stress. To address this degradation, Ag diffusion in materials of TaO and HfO is studied in a volatile memristor, furthermore, the interconnection and gate metal Ru are investigated to reduce defective traps of gate interface in non-volatile memory devices.
View Article and Find Full Text PDFAnalog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing.
View Article and Find Full Text PDFIn this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS/Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide.
View Article and Find Full Text PDFMaking up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited.
View Article and Find Full Text PDFWe investigated diffusion memristors in the structure of Ag/TaO/HfO/Pt, in which active Ag ions control active metal ion diffusion and mimic biological brain functions. The CMOS compatible high- metal oxide could control an Ag electrode that was ionized by applying an appropriate voltage to form a conductive filament, and the movement of Ag ions was chemically and electrically controlled due to oxygen density. This diffusion memristor exhibited diffused characteristics with a selectivity of 109, and achieved a low power consumption of 2 mW at a SET voltage of 0.
View Article and Find Full Text PDFC-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion.
View Article and Find Full Text PDFTwo-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.
View Article and Find Full Text PDFRecently, we demonstrated the nonvolatile resistive switching effects of metal-insulator-metal (MIM) atomristor structures based on two-dimensional (2D) monolayers. However, there are many remaining combinations between 2D monolayers and metal electrodes; hence, there is a need to further explore 2D resistance switching devices from material selections to future perspectives. This study investigated the volatile and nonvolatile switching coexistence of monolayer hexagonal boron nitride (h-BN) atomristors using top and bottom silver (Ag) metal electrodes.
View Article and Find Full Text PDFTwo-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe) with in-plane platinum ditelluride (PtTe) edge contacts, mitigating the aforementioned challenges.
View Article and Find Full Text PDFHydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein.
View Article and Find Full Text PDFAmbipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal-oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections.
View Article and Find Full Text PDFHeart rhythm disorders, known as arrhythmias, cause significant morbidity and are one of the leading causes of mortality. Cardiac arrhythmias are frequently treated by implantable devices, such as pacemakers and defibrillators, or by ablation therapy guided by electroanatomical mapping. Both implantable and ablation therapies require sophisticated biointerfaces for electrophysiological measurements of electrograms and delivery of therapeutic stimulation or ablation energy.
View Article and Find Full Text PDF1/ noise is a critical figure of merit for the performance of transistors and circuits. For two-dimensional devices (2D-FETs), and especially for applications in the GHz range where short-channel FETs are required, the velocity saturation (VS) effect can result in the reduction of 1/ noise at high longitudinal electric fields. A new physics-based compact model has been for the first time introduced for single- to few-layer 2D-FETs in this study, precisely validating 1/ noise experiments for various types of devices.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have been studied as an emerging class of nanomaterials owing to their attractive properties in nearly every field of science and technology. Molybdenum disulfide (MoS) is one of the more promising candidates of these atomically thin 2D materials for its technological potential. The facile synthesis of MoS remains a matter of broad interest.
View Article and Find Full Text PDFHumans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited.
View Article and Find Full Text PDFRecently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 10 and low switching voltage below 0.
View Article and Find Full Text PDF