It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000-65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago.
View Article and Find Full Text PDFWe present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans.
View Article and Find Full Text PDFRecent finds of 36 ceramic artifacts from the archaeological site of Vela Spila, Croatia, offer the first evidence of ceramic figurative art in late Upper Palaeolithic Europe, c. 17,500-15,000 years before present (BP). The size and diversity of this artistic ceramic assemblage indicate the emergence of a social tradition, rather than more ephemeral experimentation with a new material.
View Article and Find Full Text PDFNeandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development.
View Article and Find Full Text PDFAnalysis of Neandertal DNA holds great potential for investigating the population history of this group of hominins, but progress has been limited due to the rarity of samples and damaged state of the DNA. We present a method of targeted ancient DNA sequence retrieval that greatly reduces sample destruction and sequencing demands and use this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. We find that mtDNA genetic diversity in Neandertals that lived 38,000 to 70,000 years ago was approximately one-third of that in contemporary modern humans.
View Article and Find Full Text PDFA complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone.
View Article and Find Full Text PDFVindija cave in Croatia has yielded the youngest securely dated Neandertal skeletal remains in Central/Eastern Europe. In addition, these remains have been found in association with archaeological material exhibiting Upper Paleolithic elements. Due to its geographic location and date, the Vindija remains are particularly crucial for the understanding of initial modern human peopling of Europe and the nature of the Neandertal demise.
View Article and Find Full Text PDF