Fluorescence Ca(2+) imaging enables large-scale recordings of neural activity, but collective dynamics across mammalian brain regions are generally inaccessible within single fields of view. Here we introduce a two-photon microscope possessing two articulated arms that can simultaneously image two brain areas (∼0.38 mm(2) each), either nearby or distal, using microendoscopes.
View Article and Find Full Text PDFThe crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract.
View Article and Find Full Text PDFWe constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions.
View Article and Find Full Text PDFMost multiphoton imaging of biological specimens is performed using microscope objectives optimized for high image quality under wide-field illumination. We present a class of objectives designed de novo without regard for these traditional constraints, driven exclusively by the needs of fast multiphoton imaging in turbid media: the delivery of femtosecond pulses without dispersion and the efficient collection of fluorescence. We model the performance of one such design optimized for a typical brain-imaging setup and show that it can greatly outperform objectives commonly used for this task.
View Article and Find Full Text PDFMouse olfactory receptor proteins have relatively broad odorant tuning profiles, so single odorants typically activate a substantial subset of glomeruli in the main olfactory bulb, resulting in stereotyped odorant- and concentration-dependent glomerular input maps. One of the functions of the olfactory bulb may be to reduce the extent of this rather widespread activation before transmitting the information to higher olfactory centers. Two circuits have been studied in vitro that could perform center-surround inhibition in the olfactory bulb, one circuit acting between glomeruli, the other through the classical reciprocal synapses between the lateral dendrites of mitral cells and the dendrites of granule cells.
View Article and Find Full Text PDFThis paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio. Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations. Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation.
View Article and Find Full Text PDF