Publications by authors named "Dejan Slepcev"

Transport based distances, such as the Wasserstein distance and earth mover'sdistance, have been shown to be an effective tool in signal and image analysis. The success of transport based distances is in part due to their Lagrangian nature which allows it to capture the important variations in many signal classes. However these distances require the signal to be nonnegative and normalized.

View Article and Find Full Text PDF

Transport-based techniques for signal and data analysis have received increased attention recently. Given their ability to provide accurate generative models for signal intensities and other data distributions, they have been used in a variety of applications including content-based retrieval, cancer detection, image super-resolution, and statistical machine learning, to name a few, and shown to produce state of the art results in several applications. Moreover, the geometric characteristics of transport-related metrics have inspired new kinds of algorithms for interpreting the meaning of data distributions.

View Article and Find Full Text PDF

Transportation-based metrics for comparing images have long been applied to analyze images, especially where one can interpret the pixel intensities (or derived quantities) as a distribution of 'mass' that can be transported without strict geometric constraints. Here we describe a new transportation-based framework for analyzing sets of images. More specifically, we describe a new transportation-related distance between pairs of images, which we denote as linear optimal transportation (LOT).

View Article and Find Full Text PDF

Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data.

View Article and Find Full Text PDF