Publications by authors named "Dejan Maglic"

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures.

View Article and Find Full Text PDF
Article Synopsis
  • * RLY-4008 is a next-generation FGFR2 inhibitor that shows high selectivity over FGFR1 and FGFR4, effectively targeting both primary changes and resistance mutations seen in tumors.
  • * Early clinical trials indicate that RLY-4008 can successfully induce tumor regression without significant toxicities from other FGFR isoforms, highlighting its potential as a promising treatment for FGFR2-driven cancers.
View Article and Find Full Text PDF

Although the Hippo transcriptional coactivator YAP is considered oncogenic in many tissues, its roles in intestinal homeostasis and colorectal cancer (CRC) remain controversial. Here, we demonstrate that the Hippo kinases LATS1/2 and MST1/2, which inhibit YAP activity, are required for maintaining Wnt signaling and canonical stem cell function. Hippo inhibition induces a distinct epithelial cell state marked by low Wnt signaling, a wound-healing response, and transcription factor Klf6 expression.

View Article and Find Full Text PDF

Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional "omic" data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ.

View Article and Find Full Text PDF

The mammalian Hippo signaling pathway, through its effectors YAP and TAZ, coerces epithelial progenitor cell expansion for appropriate tissue development or regeneration upon damage. Its ability to drive rapid tissue growth explains why many oncogenic events frequently exploit this pathway to promote cancer phenotypes. Indeed, several tumor types including basal cell carcinoma (BCC) show genetic aberrations in the Hippo (or YAP/TAZ) regulators.

View Article and Find Full Text PDF

Our recent work has indicated that the DMP1 locus on 7q21, encoding a haplo-insufficient tumour suppressor, is hemizygously deleted at a high frequency in breast cancer. The locus encodes DMP1α protein, an activator of the p53 pathway leading to cell cycle arrest and senescence, and two other functionally undefined isoforms, DMP1β and DMP1γ. In this study, we show that the DMP1 locus is alternatively spliced in ∼30% of breast cancer cases with relatively decreased DMP1α and increased DMP1β expression.

View Article and Find Full Text PDF

Our recent study shows a pivotal role of Dmp1 in quenching hyperproliferative signals from HER2 to the Arf-p53 pathway as a safety mechanism to prevent breast carcinogenesis. To directly demonstrate the role of Dmp1 in preventing HER2/neu-driven oncogenic transformation, we established Flag-Dmp1α transgenic mice (MDTG) under the control of the mouse mammary tumor virus (MMTV) promoter. The mice were viable but exhibited poorly developed mammary glands with markedly reduced milk production; thus more than half of parous females were unable to support the lives of new born pups.

View Article and Find Full Text PDF

Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its down-regulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported.

View Article and Find Full Text PDF

The transcription factor Dmp1 is a Ras/HER2-activated haplo-insufficient tumor suppressor that activates the Arf/p53 pathway of cell-cycle arrest. Recent evidence suggests that Dmp1 may activate p53 independently of Arf in certain cell types. Here, we report findings supporting this concept with the definition of an Arf-independent function for Dmp1 in tumor suppression.

View Article and Find Full Text PDF

Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the phosphatidylinositol-3'-kinase-Akt-NF-κB pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-κB was shown to the Dmp1 promoter and that of Dmp1 to the Arf promoter on HER2/neu overexpression.

View Article and Find Full Text PDF

The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab.

View Article and Find Full Text PDF

Dmp1 (Dmtf1) encodes a Myb-like transcription factor implicated in tumor suppression through direct activation of the Arf-p53 pathway. The human DMP1 gene is frequently deleted in non-small cell lung cancers, especially those that retain wild-type INK4a/ARF and/or p53. To identify novel genes that are regulated by Dmp1, transcriptional profiles of lung tissue from Dmp1-null and wild-type mice were generated using the GeneChip Microarray.

View Article and Find Full Text PDF

Mouse mammary tumor virus (MMTV) long terminal repeat (LTR)-driven transgenic mice are excellent models for breast cancer as they allow for the targeted expression of various oncogenes and growth factors in neoplastic transformation of mammary glands. Numerous MMTV-LTR-driven transgenic mouse models of breast cancer have been created in the past three decades, including MMTV-neu/ErbB2, cyclin D1, cyclin E, Ras, Myc, int-1 and c-rel. These transgenic mice develop mammary tumors with different latency, histology and invasiveness, reflecting the oncogenic pathways activated by the transgene.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc3dj0f1e9c763eqvu9up6dlct8c32qoj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once