Publications by authors named "Deivy Wilson"

A disposable electrochemical immunosensors is presented suitable to detect cancer biomarker p53 using screen-printed carbon electrodes modified with a layer-by-layer (LbL) matrix of carboxylated NiFeO nanoparticles and polyethyleneimine, onto which anti-p53 antibodies were adsorbed. Under optimized conditions, the immunosensors exhibited high surface coverage and high concentration of immobilized antibodies, which allowed for detection of p53 in a wide dynamic range from 1.0 to 10 × 10 pg mL, with a limit of detection of 5.

View Article and Find Full Text PDF

The pursuit of biocompatible, breathable and skin-conformable wearable sensors has predominantly focused on synthetic stretchable hydrophobic polymers. Microbial nanocellulose (MNC) is an exceptional skin-substitute natural polymer routinely used for wound dressing and offers unprecedented potential as substrate for wearable sensors. A versatile strategy for engineering wearable sensing platforms is reported, with sensing units made of screen-printed carbon electrodes (SPCEs) on MNC.

View Article and Find Full Text PDF

Electrochemical immunosensors have been developed to determine the carbohydrate antigen 19-9 (CA19-9). They are based on screen-printed carbon electrodes (SPCEs) coated with layer-by-layer (LbL) films of carbon black (CB) and polyelectrolytes. Owing to a suitable choice of LbL film architecture, the procedures for immobilization of anti-CA19-9 antibodies on the electrode surfaces were straightforward.

View Article and Find Full Text PDF

Nanostructured capacitive biosensors, combined with inexpensive fabrication technologies, may provide simple, sensitive devices for detecting clinically relevant cancer biomarkers. Herein, we report a novel platform for detecting the pancreatic cancer biomarker CA19-9 using low-cost screen-printed interdigitated electrodes (SPIDEs). The SPIDEs were modified by carbon nano-onions (CNOs) and graphene oxide (GO) films, on which a layer of anti-CA19-9 antibodies was immobilized.

View Article and Find Full Text PDF

Outbreaks of foodborne diseases demand simple, rapid techniques for detecting pathogenic bacteria beyond the standard methods that are not applicable to routine analysis in the food industry and in the points of food consumption. In this work, we developed a sensitive, rapid and low-cost assay for detecting Escherichia coli (E. coli), Staphylococcus aureus (S.

View Article and Find Full Text PDF

All-solid-state sensors with polyvinyl chloride (PVC)-based membranes using off-the-shelf N-hydroxysuccinimide (NHS) and succinimide (Succ) ionophores were prepared using DOP (dioctyl phthalate) and NPOE (ortho-nitrophenyloctyl ether) as plasticizers. Good responses were obtained when NHS was used. The potentiometric response of the proposed electrode is independent of pH over the range 2-6.

View Article and Find Full Text PDF

This work describes the use of an array of potentiometric sensors and an artificial neural network response model to determine perchlorate and sulfide ions in polluted waters, by what is known as an electronic tongue. Sensors used have been all-solid-state PVC membrane selective electrodes, where their ionophores were different metal-phtalocyanine complexes with specific and anion generic responses. The study case illustrates the potential use of electronic tongues in the quantification of mixtures when interfering effects need to be counterbalanced: relative errors in determination of individual ions can be decreased typically from 25% to less than 5%, if compared to the use of a single proposed ion-selective electrode.

View Article and Find Full Text PDF

Two PVC membrane ion selective electrodes for Pb(II) ion based on two bis-thioureas: 1,3-bis(N'-benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene as ionophores, are reported. A first membrane formulated using 1,3-bis(N'-benzoylthioureido)benzene as carrier exhibited a Nernstian response to Pb(II) over a wide concentration range (4.0x10(-6) to 1.

View Article and Find Full Text PDF