Publications by authors named "Deivid G Silva"

Introduction: This study aimed to investigate whether individualizing autonomic recovery periods between resistance training (RT) sessions (IND) using heart rate variability (HRV), measured by the root mean square of successive R-R interval differences (RMSSD), would lead to greater and more consistent improvements in muscle strength, muscle mass, and functional performance in older women compared to a fixed recovery protocol (FIX).

Methods: Twenty-one older women (age 66.0 ± 5.

View Article and Find Full Text PDF

We aimed to compare individual hypertrophic responses to high-load resistance training (HL-RT) or high-load with blood flow restriction (HL-BFR). Furthermore, we investigated whether greater responsiveness to one of the protocols could be explained by acute changes in blood deoxyhemoglobin concentration (HHb) and total hemoglobin concentration (tHb) (proxy markers of metabolic stress). Ten untrained participants had their legs randomized into both HL-RT and HL-BFR and underwent 10 weeks of training.

View Article and Find Full Text PDF

This study investigated the impact of menstrual cycle (MC) phases and resistance training (RT) on muscle cross-sectional area (CSA) in two MCs utilizing a within-subject design. Twenty women with regular MCs had their legs randomly allocated to either the control (CON) or RT condition, which included 16 training sessions over two MCs. CSA, estradiol (E2), and progesterone (P4) were assessed during the menstruation (M), ovulation (O), and luteal (L) phases in the first (M1, O1, L1) and second (M2, O2, L2) MCs and at the beginning of the third MC (M3).

View Article and Find Full Text PDF

The aim of this study was to investigate whether baseline values and acute and chronic changes in androgen receptors (AR) markers, including total AR, cytoplasmic (cAR), and nuclear (nAR) fractions, as well as DNA-binding activity (AR-DNA), are involved in muscle hypertrophy responsiveness by comparing young nonresponder and responder individuals. After 10 wk of resistance training (RT), participants were identified as nonresponders using two typical errors (TE) obtained through two muscle cross-sectional area (mCSA) ultrasound measurements (2 × TE; 4.94%), and the highest responders within our sample were numerically matched.

View Article and Find Full Text PDF

Purpose: Androgen receptor (AR) expression and signaling have been regarded as a mechanism for regulating muscle hypertrophy. However, little is known about the associations between acute and chronic changes in skeletal muscle total AR, cytoplasmic AR (cAR), nuclear AR (nAR), and AR DNA-binding (AR-DNA) induced by resistance training (RT) and hypertrophy outcomes in women and men. This study aimed to investigate the acute and chronic effects of RT on skeletal muscle total AR, cAR, and nAR contents and AR-DNA in women and men.

View Article and Find Full Text PDF

Purpose: Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state.

Methods: Participants (19 women and 19 men) underwent 10 weeks of RT.

View Article and Find Full Text PDF

Purpose: Manual reconstruction (MR) of the vastus lateralis (VL) muscle cross-sectional area (CSA) from sequential ultrasound (US) images is accessible, is reproducible, and has concurrent validity with magnetic resonance imaging. However, this technique requires numerous controls and procedures during image acquisition and reconstruction, making it laborious and time-consuming. The aim of this study was to determine the concurrent validity of VL CSA assessments between MR and computer vision-based automated reconstruction (AR) of CSA from sequential images of the VL obtained by US.

View Article and Find Full Text PDF

The aim of this study was to compare the effects of progressive overload in resistance training on muscle strength and cross-sectional area (CSA) by specifically comparing the impact of increasing load (LOADprog) versus an increase in repetitions (REPSprog). We used a within-subject experimental design in which 39 previously untrained young persons (20 men and 19 women) had their legs randomized to LOADprog and REPSprog. Outcomes were assessed before and after 10 weeks of training.

View Article and Find Full Text PDF

Bergamasco, JGA, Gomes da Silva, D, Bittencourt, DF, Martins de Oliveira, R, Júnior, JCB, Caruso, FC, Godoi, D, Borghi-Silva, A, and Libardi, CA. Low-load resistance training performed to muscle failure or near muscle failure does not promote additional gains on muscle strength, hypertrophy, and functional performance of older adults. J Strength Cond Res 36(5): 1209-1215, 2022-The aim of the present study was to compare the effects of low-load resistance training (RT) protocols performed to failure (FAI), to voluntary interruption (VOL), and with a fixed low repetitions (FIX) on muscle strength, hypertrophy, and functional performance in older adults.

View Article and Find Full Text PDF

Purpose: We compared the effects of suspension training (ST) with traditional resistance training (TRT) on muscle mass, strength and functional performance in older adults.

Methods: Forty-two untrained older adults were randomized in TRT, ST (both performed 3 sets of whole body exercises to muscle failure) or control group (CON). Muscle thickness (MT) of biceps brachii (MT) and vastus lateralis (MT), maximal dynamic strength test (1RM) for biceps curl (1RM) and leg extension exercises (1RM), and functional performance tests (chair stand [CS], timed up and go [TUG] and maximal gait speed [MGS]) were performed before and after 12 weeks of training.

View Article and Find Full Text PDF

The aim of the present study was to investigate if resistance training (RT), performed with individualized recovery between sessions (RT-IND), promotes greater gains in strength and muscle mass and reduces the variability on adaptations compared to RT with fixed recovery intervals (RT-FIX). Twenty young men (age 21.9 ± 3.

View Article and Find Full Text PDF