Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised.
View Article and Find Full Text PDFOnly very few left/right asymmetrically expressed genes are known in the mammalian embryo. In a screen for novel factors we identified the gene encoding the neuropeptide Galanin in mouse. At embryonic day (E) 8.
View Article and Find Full Text PDFBackground: Identifying molecular pathways regulating the development of pacemaking and coordinated heartbeat is crucial for a comprehensive mechanistic understanding of arrhythmia-related diseases. Elucidation of these pathways has been complicated mainly by an insufficient definition of the developmental structures involved in these processes and the unavailability of animal models specifically targeting the relevant tissues. Here, we report on a highly restricted expression pattern of the homeodomain transcription factor Shox2 in the sinus venosus myocardium, including the sinoatrial nodal region and the venous valves.
View Article and Find Full Text PDFThe mucus secreting cement gland is the anterior-most ectodermal organ of the Xenopus embryo. The homeobox genes Pltx1 and Pitx2c are expressed in the cement gland primordium. Misexpression of both genes induced ectopic cement gland tissue in whole embryos and transcription of the marker genes Xag1 and Xag2 in animal cap explant cultures.
View Article and Find Full Text PDFThe homeobox gene goosecoid, originally identified in Xenopus, is expressed in the organizer or its equivalent during gastrulation in the frog, chick, zebrafish and mouse. To investigate the role of goosecoid in mouse development, we have generated embryonic stem cells that stably overexpress the murine homolog of goosecoid. These cells show a repression of the gastrulation-associated gene Brachyury.
View Article and Find Full Text PDFLeft-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2.
View Article and Find Full Text PDFSpecific signaling molecules play a pivotal role in the induction and specification of tissues during early vertebrate embryogenesis. BMP-4 specifies ventral mesoderm differentiation and inhibits neural induction in Xenopus, whereas three molecules secreted from the organizer, noggin, follistatin and chordin dorsalize mesoderm and promote neural induction. Here we report that follistatin antagonizes the activities of BMP-4 in frog embryos and mouse teratocarcinoma cells.
View Article and Find Full Text PDFSchweiz Rundsch Med Prax
February 1977