Cell membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are homooligomeric, with native quaternary structure required for maximal enzyme activity. In this study, we mutated lysine 79 in human ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). The residue corresponding to lysine 79 in NTPDase3 is conserved in all known cell surface membrane NTPDases (NTPDase1, 2, 3, and 8), but not in the soluble, monomeric NTPDases (NTPDase5 and 6), or in the intracellular, two transmembrane NTPDases (NTPDase4 and 7).
View Article and Find Full Text PDFThe ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases) are a family of enzymes that control the levels of extracellular nucleotides, thereby modulating purinergically controlled physiological processes. Six of the eight known NTPDases are membrane-bound enzymes; only NTPDase 5 and 6 can be released as soluble enzymes. Here we report the first bacterial expression and refolding of soluble human NTPDase5 from inclusion bodies.
View Article and Find Full Text PDFThe ectonucleoside triphosphate diphosphohydrolases (NTPDases) control extracellular nucleotide concentrations, thereby modulating many important biological responses, including blood clotting and pain perception. NTPDases1-4 are oligomeric integral membrane proteins, whereas NTPDase5 (CD39L4) and NTPDase6 (CD39L2) are soluble monomeric enzymes, making them more amenable to thorough structural and functional analyses than the membrane-bound forms. Therefore, we report here the bacterial expression, refolding, purification, and biochemical characterization of the soluble portion of human NTPDase6.
View Article and Find Full Text PDF